矩阵乘以矩阵的转置(记作( AA^T )或( A^2 ))是线性代数中的重要运算,其结果为对称矩阵,每个元素对应原矩阵行向量间的内积。这种
对于A×A^T,其中 A^T 为 n×m 矩阵,故它们相乘的结果是一个 m×m 矩阵: (Aij)(A^Tjk) = (Cij) 其中,C 是一个 m×m 矩阵,其元素为: Cij = ∑k=1^n Aij · A^Tjk = ∑k=1^n Aij · Akj 由于矩阵转置将行和列互换,因此: Cij = ∑k=1^n Aij · Akj = ∑k=1^n Aik · Ajk...
矩阵乘矩阵的转置等于 只有对称矩阵,反对称矩阵和正交矩阵满足矩阵的转置乘以矩阵等于矩阵乘以矩阵的转置。如果矩阵不是方矩阵:转换矩阵和原始矩阵的乘积是一个正方形矩阵,它的顺序是原始矩阵Amxn的列的个数。原始矩阵和过渡矩阵的乘积是一个正方形矩阵,其顺序是原始矩阵的行数m。这两个矩阵不完全相同,也不相等。
转换矩阵和原始矩阵的乘积是一个正方形矩阵,它的顺序是原始矩阵Amxn的列的个数。原始矩阵和过渡矩阵的乘积是一个正方形矩阵,其顺序是原始矩阵的行数m。这两个矩阵不完全相同,也不相等。 如果矩阵是方矩阵: (1)对称矩阵的变换矩阵(变换矩阵=原始矩阵)通过乘以原始矩阵来满足交换法则。 (2)反对称矩阵的转置矩阵(...
而A'A正定当且仅当A可逆(此时A'A可逆半正定故正定).初等矩阵都是可逆矩阵, 其乘积仍可逆.故此时可以保证正定. 结果一 题目 正定矩阵一个矩阵乘以它的转置一定正定吗?如果不是,那要满足什么条件才成立?如果这个矩阵是一系列初等列矩阵的乘积成立吗?麻烦证明一下. 答案 首先要限定是实矩阵,否则例如A =i 00 ...
1 只有对称矩阵,反对称矩阵和正交矩阵满足矩阵的转置乘以矩阵,等于矩阵乘以矩阵的转置。如果矩阵不是方阵:转置矩阵与原矩阵的乘积是一个方阵,阶数为原矩阵Amxn的列数n;原矩阵与转置矩阵的乘积是一个方阵,阶数为原矩阵的行数m。这两个矩阵不是同型矩阵,不相等。如果矩阵是方阵:(1)对称矩阵(转置矩阵=原...
④矩阵的秩=非零特征值的个数=正惯性指数 非严格证明:对称矩阵一定可以相似对角化。所以r(A)=r(Λ...
矩阵a乘a的转置矩阵:AA^ T|=| A| A^ T|=| A||=| A|^2也就是 A转置等于 A 矩阵转置的基本特性:1、实对称矩阵 A的不同特征值对应的特征向量为正交特征向量;实对称矩阵 A特征值均为实数,本征向量均为实向量。2、 n阶实对称矩阵 A必可对角化,其特征值是类似对角阵上的元素 若λ具有 k重特征...
只有在第一个矩阵的列数和第二个矩阵的行数相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m>n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。矩阵相乘的特点:当矩阵A的列数等于...
a矩阵乘以a的转置仍然是一个矩阵,是不能和数值0比大小的。由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(...