求极限x→0 lim ln(1+2x)/x麻烦具体 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析解答一 举报由罗比达法则:limln(1+2x) /x =lim 2/(1+2x) =2法二:∵x→0时ln(1+2x)等价于2x∴原式=2 解析看不懂?免费查看同类题视频解析查看解答 ...
解答 x-ln(1+x)等价于1/2x^2。lim(x-ln(1+x))/x²=lim(1-1/(1+x))/2x=lim1/2(1+x)=1/2∴x-ln(1+x)~x²/2等价无穷小:1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、t...
ln(1+2x)等价于2x。 可以证明lim(x→0)[ln(1+x)]/x=1,从而x →0时,ln (1+x)~x,所以x →0,ln (1+2x)~2x。 集合中的等价关系 若关系R在集合A中是自反、对称和传递的,则称R为A上的等价关系。所谓关系R 就是笛卡尔积 A×A 中的一个子集。
ln(1+2x)等价于2x。可以证明lim(x→0)[ln(1+x)]/x=1,从而x →0时,ln (1+x)~x。所以x →0,ln (1+2x)~2x。等价无穷小。1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6...
ln(1+2x)等价于2x。可以证明lim(x→0)[ln(1+x)]/x=1,从而x →0时,ln (1+x)~x。所以x →0,ln (1+2x)~2x。等价无穷小。1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6...
我想问一下,左边为什..我想问一下,左边为什么不能直接用等价无穷小替换,就那个ln(1+2x)替换成2x求解
x-ln(1+x)等价于1/2x^2。 lim(x-ln(1+x))/x² =lim(1-1/(1+x))/2x =lim1/2(1+x) =1/2 ∴x-ln(1+x)~x²/2 等价无穷小: 1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0) 3、1-cosx~1/2x^2 (x→0) 4、1-cos(x^2)~1/2x^4 (x→0) 5、sinx~x (...
x趋近于0 时,ln(1+2x)与2x是等价无穷小,因此求极限过程中可以用2x替换ln(1+2x),如上第二种证法就是.由于这是求0/0型极限,因此可以用另一种方法即用洛必塔法则来求,如上第一种证法就是.用等价无穷小和洛必塔法则是两种不同的方法,都可以求本题的极限....
可以证明lim(x→0)[ln(1+x)]/x=1,从而x →0时,ln (1+x)~x。所以x →0,ln (1+2x)~2x。等价无穷小。1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、...
ln(1+2x)等价于2x。可以证明lim(x→0)[ln(1+x)]/x=1,从而x →0时,ln (1+x)~x。所以x →0,ln (1+2x)~2x。等价无穷小。1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6...