矩阵AB=0可以推出什么 证明:如果AB=0,那么B的每个列都是齐次方程组AX=0的解。设r(A)=r,那么方程组AX=0最多有n-r个线性无关的解,所以:r(B)<=n-r=n-r(A)。因此,r(A)+r(B)<=n。称为n元齐次线性方程组。设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初...
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
在线性代数中,矩阵AB = BA 的情况是两个矩阵的乘积可以满足交换律。下面是一些情况下矩阵AB = BA 成立的常见情况:单位矩阵:单位矩阵是一个特殊的方阵,其主对角线上的元素都是1,其他元素都是0。任何一个矩阵与单位矩阵的乘积满足交换律,即A·I = I·A,其中I表示单位矩阵。对角矩阵的交换:...
当矩阵A,B,AB都是N阶对称矩阵时,A,B可交换,即AB=BA。 证明: A,B,AB都是对称矩阵,即AT=A,BT=B,(AB)T=AB 于是有AB=(AB)T=(BT)(AT)=BA 当A,B可交换时,满足(A+B)^2=A^2+B^2+2AB 。 证明: A,B可交换,即AB=BA (A+B)^2 =A^2+AB+BA+B^2 =A^2+AB+AB+B^2=A^2+B^2...
2、同阶方阵,选B因为若A不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=O,所以其秩为0,而B不等于0,所以其秩至少为1。3、举证线性代数AB=0AB=0这个式子主要从方程组的角度理解,相当于B的列向量是Ax=0的解,那么...
①矩阵AB与BA有相同的非零特征值 注意是非零特征值 ②对于都是n阶的矩阵A、B,AB与BA有相同的行列式 考虑了领零征值 单独考虑若λ=0,此时存在非零向量x使得ABx=λx=0,所以AB不满秩,知det(AB)=0。从而因det(BA)=det(AB)=0(前一个等号只在都为n阶才成立),BA不满秩,所以存在非零向量x使得BAx=0...
设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式,这个是不成立的。行列式是一个数字,再做行列式,就是一阶行列式,也就是这个数,即||a||=|a|。A*B的行列式等于 A的行列式* B的行列式 。A、B是n阶...
矩阵ab对称意思是指阶数相同的矩阵。A、B均为对称矩阵,那么A'=A,B'=B。(AB)'=(转置的运算法则)B'A'=BA。从而(AB)'=AB当且仅当AB=BA。即AB是对称矩阵当且仅当A,B可交换。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,在物理学中,矩阵于电路学、力学、光学和...
矩阵AB=C,若B不可逆,如何求A?下面说下考研范围内常用解法。同济教材课后题有类似题型。考研题型:求...
(7)|EB−AB0AB|=|E||AB|=|AB| 再根据式子(5)(6)(7)可得 |A||B|=|AB| 现在把上述分析综合书写 根据引理根据引理根据引理根据引理矩阵相乘根据引理|A||B|=|(A0EB)|(根据引理(1))=|(E−A0E)(A0EB)|(根据引理(4))=|(EE0E)(E−A0E)(A0EB)|(根据引理(4))=|(E0−EE)(EE...