a的秩等于n-1 a不满秩 a的行列式等于零 所以 伴随矩阵也等于零 这个说法为什么不对?a的秩等于n-1 a不满秩 a的行列式等于零 所以 伴随矩阵也等于零 这个说法为
综上所述,当A的秩为n-1时,其伴随矩阵A*的秩为1,这是因为伴随矩阵A*中至少包含一个非零元素,而AA*的性质则进一步确认了A*的秩只能是1。因此,我们可以得出结论,当A的秩为n-1时,伴随矩阵A*的秩必定为1。这一结论对矩阵理论和线性代数的应用有着重要意义,它不仅揭示了矩阵秩与伴随矩阵秩...
由此,得出伴随矩阵A*的秩r(A*)的上限为1。因为若A的秩为n-1,意味着矩阵A中必然存在一个n-1阶非零子式,进而推断A*中必存在一个非零元素。深入剖析,当矩阵A的秩为n-1时,A*的秩不能超过1,这是因为A*的生成元数量受A本身秩的限制,即A*的秩r(A*)≤1。同时,结合矩阵A的秩为n-1...
广告 线性代数: 矩阵A的秩为n-1,证明伴随矩阵的秩为1.(要有过程) 由于公式r(AB)<=r(A),r(AB)<=r(B),并且r(AA*)=r(I)=n,则,伴随的秩为n;2、当r(A)=n-1时... 当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二... 线性代数: 矩阵A的秩为n-1,证明伴随矩阵的秩为1.(要有过程) ...
所以A*的列向量是AX=0的解,由A的秩为n-1,所以A*的秩≤解空间的秩=1(证≤也可以由Frobenius...
伴随矩阵的秩的问题 若A矩阵的秩为n-1,那么行列式A的值不是0么,可是伴随矩阵不是应该=|A|A-1么不应该是0么.为什么它的秩是1,我只想知道上述推导为何不正确.
线性代数中,对于一个n阶矩阵A,如果其秩r(A)=n-2,那么它的伴随矩阵A*的每个元都是A的转置矩阵adjA中相应位置的代数余子式。由于r(A)=n-2,这意味着矩阵A中有两行或两列是线性相关的,导致任何n-1阶子式都为零。因此,A*中的每个元素都对应一个n-1阶子式,其行列式值为零,这表明A*...
若A是n阶矩阵且r(A)=n-1,B是A的伴随阵,那么AB=BA=det(A)*In=0于是B的列属于A的零空间,B的行属于A'的零空间。注意到A和A'的零空间都是1维的,所以B一定形如cxy'的秩1矩阵(显然B非零),其中x和y是满足Ax=0,y'A=0,x'y=1的非零向量,余下的问题就是确定系数c,事实上c=tr...
这不是很显然的吗 如果A的秩小于n-1,那么A的所有n-1阶子阵都奇异,按伴随阵的定义直接得到adj(A)=0
这个结论的正规出处那本书上有,拍照取证发出来。似乎伴随矩阵的秩可能为1的情况是有的。