因为:limx→0(sin3xx3+f(x)x2)=limx→0sin3x+xf(x)x3=limx→0sin3xx+f(x)x2=0,所以:limx→0(sin3xx+f(x))=0.又:f(x)在x=0的某领域内二阶可导,所以:f(x),f′(x)在x=0连续,从而:f(0)=-3.由limx... 分析总结。 设fx在x0的某领域内二阶可导且结果...
【题目】设f(x)在$$ x = 0 $$的某领域内二阶可导,且$$ \lim _ { x \rightarrow 0 } ( \frac { \sin 3 x }
sin3x x+f(x) x2=0,所以: lim x→0( sin3x x+f(x))=0.又:f(x)在x=0的某领域内二阶可导,所以:f(x),f′(x)在x=0连续,从而:f(0)=-3.由 lim x→0 sin3x x+f(x) x2=0,得: lim x→0 sin3x x−3+f(x)+3 x2=0,又易知: lim x→0 3− sin3x x x2= lim x→...
;再由f(x)在x=0的某邻域内的二阶连续可导性可得:f″(0)= lim x→0f″(x)=0;利用极限的可导性,可得:f″(x)在x=0两侧变号,于是(0,f(0))为曲线的拐点. 本题考点:极值判定定理;函数的可导性和连续性的关系;求函数图形的拐点. 考点点评:本题考查了连续函数的定义、拐点的定义与判断、极值的定义...
设f(x)在x=0的某区域内二阶可导,且x→0lim[sin3x/x³+f(x)/x²]=0,求f(0),f'(x),f"(x)及x→0lim[f(x)+3]/X²解:∵x→0lim[sin3x/x³+f(x)/x²]=x→0lim[(sin3x+xf(x)]/x³=0,∴必可连续使用三次洛必达法则。【分母趋于...
相关知识点: 试题来源: 解析 解因为 sinx+xf(x) lim =lim x3 x2+f'(0)x+[1+f(0)] =lim x2 根据题意知lim 2 ,所以必有f(0)=-1. f'(0)=0 . 1/2f'(0)-1/6=1/2 ,故f(0)=-1, f'(0)=0 . f'(0)=4/3 反馈 收藏 ...
19.解:因为 sinx=x-(x^3)/(3!)+o(x^3)f(x)=f(0)+f'(0)x+(f'(0))/(2!)x^2+o(x^2) 所以,由limlim_(x→0)(sinx+xf(x))/(x^3)=1/2 可知x0x3lim_(x→0)1/(x^3)[x-(x^3)/(3!)+o(x^3)+f(0)x+f'(0)x^2+(f'(0))/(2!)x^3+x⋅c^2(x^2)]...
设f(x)在x=0的某区域内二阶可导,且lim(x→0)(sin3x/x^3+f(x)/x^2)=0, 设f(x)在x=0的某区域内二阶可导,且x→0lim[sin3x/x³+f(x)/x²]=0,求f(0),f'(x),f (x)及x→0lim[f(x)+3]/X²解:∵x→0lim[sin3x/x³+f(x)/x²]=x→0lim[(sin3x+xf(x)]/x...
设f(x)有二阶导数,在x=0的某去心邻域内f(x)≠0,且lim f(x)/x=0,f'(0)=4,求lim (1+f(x)/x)^(1/x) 设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3 设f(x)在x=0的某领域内二阶可导,且limx→0(sin3x/x3+f(x)x2)=0,求f(0),f′(0)...
cosx=1≠0,所以limx→0f″(x)=0.又因为f(x)在x=0的某邻域内有二阶连续导数,于是f″(0)=limx→0f″(x)=0.因为limx→0xf″(x)1?cosx=1>0,根据极限的保号性,在x=0的某去心邻域内必然有xf″(x)>0,即f″(x)在x=0两侧变号,于是(0,f(0))为曲线的拐点...