1. 定义特征值方程:给定一个 (n imes n) 的方阵 (A),如果存在一个非零向量 (v) 和一个标量 (lambda),使得 (A v = lambda v),那么 (lambda) 就是 (A) 的一个特征值,(v) 是对应的特征向量。 2. 构造特征值方程:将 (A v = lambda v) 变形为 ((A - lambda I)v = 0),其中 (I) 是...
设矩阵为A,特征向量是t,特征值是x,At=x*t,移项得(A-x*I)t=0,∵t不是零向量 ∴A-x*I=0,(2-x)(1-x)(-x)-4(2-x)=0,化简得(x-2)(x^2-x-4)=0,∴矩阵有三个特征值:2,(1±根号17)/2。把特征值分别代入方程,设x=(a,b,c),可得到对于x=2,...
所以β’是A属于特征值αβ‘的特征向量 所以P=(β’,γ1,γ2,...,γn-1),对角阵为diag{a1b1+...+anbn,0,0,...,0}
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则可求出属于特征值的全...
求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。若是的属于的特征向量,则也是对应于的特征向量...
求矩阵的全部特征值和特征向量的方法如下:1、计算的特征多项式;2、求出特征方程的全部根,即为的全部特征值;3、对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是、另外,若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定....
求解特征值和特征向量的步骤如下: 计算特征多项式:首先,我们需要计算矩阵A的特征多项式,这可以通过求解行列式|A-λI|=0来实现,其中I是单位矩阵。 解特征多项式:接下来,我们需要解这个特征多项式方程,得到特征值λ。这是一个多项式方程,其解可能是实数或复数。
方法一:实对称矩阵不同特征值对应的特征向量相互正交,由此可得第三个特征值对应的特征向量,进一步可得到第三个特征值。方法二:实对称矩阵所有特征值的和等于矩阵对角线上元素的代数和,所有特征值的积等于矩阵的行列式的值。据此可得第三个特征值。实对称矩阵A的不同特征值对应的特征向量是正交的。实...
对于矩阵 A,求解其特征值,可以通过求解特征方程来实现。特征方程的形式是 det(A - λI) = 0,其中 det 表示行列式,I 是单位矩阵,λ 是待求解的特征值。解特征方程,找到特征值 λ1, λ2, ..., λn。这些特征值是矩阵 A 的特征值。对于每个特征值 λi,解特征向量。特征向量可以通过...
在求矩阵的特征方程之前,需要先了解一下矩阵的特征值。假设有一个A,它是一个n阶方阵,如果有存在着这样一个数λ,数λ和一个n维非零的向量x,使的关系式Ax=λx成立,那么则称数λ为这个方阵的特征值,这个非零向量x就称为他的特征向量。矩阵的特征方程的表达式为|λE-A|=0。是一个简单的2*...