根号下1+x^2的积分是I=1/2*[x√(1+x²)+ln(x+√(1+x²))]+C。令I=∫√(1+x²)dx。=x√(1+x²)-∫x²/√(1+x²)dx。=x√(1+x²)-∫(x²+1-1)/√(1+x²)dx。=x√(1+x²)-∫√(1+x²)dx+∫1/√(1+x²)dx。=x√(1+x²)-I+ln(x+√(1+...
方法如下,请作参考:若有帮助,请采纳。
根号下1-X^2的不定积分是多少 简介 结果是 (1/2)[arcsinx + x√(1 - x²)] + Cx = sinθ,dx = cosθ dθ∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C= (arcsinx)/2 + (...
根号下(1+x2)的不定积分怎么求? 只看楼主 收藏 回复我爱贴吧 铁杆会员 8 路人IN 核心会员 6 凑积分 吐槽封神榜 初级粉丝 1 令x=tant,再分部积分 登录百度帐号 扫二维码下载贴吧客户端 下载贴吧APP看高清直播、视频! 贴吧页面意见反馈 违规贴吧举报反馈通道 贴吧违规信息处理公示...
方法如下,请作参考:
解析:根号下1-x^2的积分可以通过变量代换来求解。令x = sin(t), dx = cos(t)dt,将积分转化为∫cos^2(t)dt。继续化简,使用三角恒等式cos^2(t) = 1/2 + 1/2*cos(2t),则∫cos^2(t)dt = ∫(1/2 + 1/2*cos(2t))dt。按照线性性质和基本积分公式进行求解,得到∫cos^2(t)...
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么 ∫√(1-x^2)dx=∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C 积分基本公式 1、∫0dx=c 2、∫x^udx...
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么 ∫√(1-x^2)dx=∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C 又sint=x,那么t=arcsinx,sin2t=2sint...
根号下1-x^2的不定积分:(1/2)[arcsinx + x√(1 - x^2)] + C √(1-x^2)的不定积分的计算方法为:∫ √(1 - x^2) dx = ∫ √(1 - sin^2θ)(cosθ dθ) = ∫ cosθ^2 dθ= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C= (arcsinx)/2 + (...
令x=sint dx=costdt ∫(-1,1) √(1-x^2) dx =∫(-π/2,π/2) (cost)^2dt =1/2*∫(-π/2,π/2) 1+cos2t dt =1/2*(t+1/2*sin2t)|(-π/2,π/2)=π/2