会丢失一个自由度,出现欧拉角死锁问题,一般用四元数解决。 其在Eigen库中的表现形式为: Vector3dv (1,0,0);AngleAxisdrotation_vector(M_PI/4,Vector3d(0,0,1));// 参数1:旋转角度; 参数2:旋转轴Vector3dv_rotated=rotation_vector*v;// 欧拉角: 旋转矩阵直接转换为欧拉角Vector3deuler_angle=rotation_...
四元数:四元数由一个实部和三个虚部构成,可以用来表示三维空间中的旋转。四元数具有无奇异性(不会出现万向锁问题)和紧凑性(比旋转矩阵和欧拉角更高效)。四元数之间的乘法表示旋转的组合。 1 欧拉角与万向锁 旋转有 fixed angle (内旋)和 eular angle (外旋) 两种表示方式。Fixed angle 表示中,每次旋转围绕一...
四元数旋转具有很好的插值性质和无歧义性,因此在计算机图形学等领域得到了广泛应用。 接下来,我们介绍欧拉角。欧拉角是一种将旋转表示为一系列基本旋转的方法。在三维空间中,常用的欧拉角包括绕X轴旋转的俯仰角(pitch)、绕Y轴旋转的偏航角(yaw)和绕Z轴旋转的滚转角(roll)。欧拉角可以通过矩阵乘法来表示旋转,即将三...
旋转矩阵、欧拉角、四元数比较旋转矩阵、欧拉角、四元数比较 旋转矩阵、欧拉角、四元数主要用于:向量的旋转、坐标系之间的转换、角位移计算、方位的平滑插值计算 各方法比较 任务/性质 旋转矩阵 欧拉角 四元数 在坐标系间(物体和惯性)旋转点 能 不能(必须转换到矩阵) 不能(必须转换到矩阵) 连接或增量旋转 能,...
四元数的通俗理解,就是表示物体姿态的,与上面的欧拉角相似(这里只是表达在理解位姿一词上的相似);当然也可以理解为一种旋转算法,与旋转矩阵及变换矩阵相似(这里的相似只的是在使用时)。通俗的解释完了,看下四元数如何表示旋转以及如何进行坐标系转换的吧。
旋转矩阵 除了四元数和欧拉角,也可用矩阵的形式来代表旋转。一般3*3的矩阵就可以表示3维空间中任意的旋转了。 设旋转轴为(x,y,z),旋转角度为θ,我们设c=cosθ,s=sinθ,那么可以得到绕任意轴的旋转矩阵: (3) 绕着单个轴的旋转矩阵如下: (4)
三维旋转:旋转矩阵,欧拉角,四元数 三维旋转:旋转矩阵,欧拉⾓,四元数 原⽂见我的,欢迎⼤家过去评论。如何描述三维空间中刚体的旋转,是个有趣的问题。具体地说,就是刚体上的任意⼀个点P(x, y, z)围绕过原点的轴(i, j, k)旋转θ,求旋转后的点P\'(x\', y\', z\')。旋转矩阵 旋转...
缺点:不能插值。矩阵旋转使用3x3矩阵,记录9个数值,而四元数只需要4个数值。计算复杂,效率低。 转换关系 旋转矩阵 与四元数 间的转换: 其中: 欧拉角 (12种顺规的其中一种)与四元数 间的转换: 其中[4]: 旋转矩阵 与欧拉角 (12种顺规的其中一种)间的转换[3]: ...
4、欧拉角转换旋转矩阵 当然这个欧拉角的旋转顺序也是很有关系的,都是描述着一个坐标系到另一个坐标系的变化,也就是说一个坐标系相对于另一个坐标系的位姿可以使用一个旋转矩阵来表示。其旋转矩阵我们来看下推导如下: 5、四元数 四元数,又称欧拉参数,提供另外一种方法来表述三维旋转。四元数方法用在大多数的演...
四元数与旋转矩阵之间有一个简单的关系。任何一个旋转矩阵都可以用一个四元数来表示,并且一个四元数也可以转换成一个旋转矩阵。这个转换过程中,四元数和旋转矩阵的元素之间有一个固定的关系。 欧拉角是一种描述物体在三维空间中的方向的方法。欧拉角通常由三个角度(yaw、pitch、roll)组成,用于描述物体相对于旋转参...