欧拉角和旋转矩阵可以相互转换,通过旋转矩阵可以计算出对应的欧拉角,反之亦然。四元数和旋转矩阵也可以相互转换,通过旋转矩阵可以计算出对应的四元数,反之亦然。尽管存在转换关系,但在实际应用中,需要根据具体需求选择合适的旋转描述方法。 综上所述,四元数、欧拉角和旋转矩阵是描述三维空间物体旋转的常用方法。它们各...
四元数:四元数由一个实部和三个虚部构成,可以用来表示三维空间中的旋转。四元数具有无奇异性(不会出现万向锁问题)和紧凑性(比旋转矩阵和欧拉角更高效)。四元数之间的乘法表示旋转的组合。 1 欧拉角与万向锁 旋转有 fixed angle (内旋)和 eular angle (外旋) 两种表示方式。Fixed angle 表示中,每次旋转围绕一...
旋转矩阵转四元数 欧拉角转旋转矩阵 绕X轴旋转 \mathrm{roll} 角R_X=\begin{bmatrix} 1&0&0\\0&\cos(\mathrm{roll})&-\sin(\mathrm{roll})\\0&\sin(\mathrm{roll})&\cos(\mathrm{roll}) \end{bmatrix}\tag{9}绕Y轴旋转 \mathrm{pitch} 角R_Y=\begin{bmatrix} \cos(\mathrm{pitch})&0...
旋转矩阵是正交矩阵,即∣R∣=1|R|=1 ∣R∣=1,旋转变换不改变向量的长度。 欧拉角的物理意义 任何一个旋转可以表示为依次绕着三个旋转轴旋三个角度的组合。这三个角度称为欧拉角。 本文中提到的欧拉角指:绕着世界坐标系的x,y,z轴,依次旋转的结果。其取值范围如下: θx∈(−π,π),θy∈(−π2,π...
四元数的通俗理解,就是表示物体姿态的,与上面的欧拉角相似(这里只是表达在理解位姿一词上的相似);当然也可以理解为一种旋转算法,与旋转矩阵及变换矩阵相似(这里的相似只的是在使用时)。通俗的解释完了,看下四元数如何表示旋转以及如何进行坐标系转换的吧。
三维旋转:旋转矩阵,欧拉角,四元数 三维旋转:旋转矩阵,欧拉⾓,四元数 原⽂见我的,欢迎⼤家过去评论。如何描述三维空间中刚体的旋转,是个有趣的问题。具体地说,就是刚体上的任意⼀个点P(x, y, z)围绕过原点的轴(i, j, k)旋转θ,求旋转后的点P\'(x\', y\', z\')。旋转矩阵 旋转...
优点:三个角度组成,直观,容易理解,可以进行从一个方向到另一个方向旋转大于180度的角度。 缺点:万向节死锁问题;欧拉角的插值比较难;计算旋转变换时,一般需要转换成旋转矩阵,计算很多sin, cos,计算量较大。 四元数(Quaternions) 四元数由四部分(一个实部,三个虚部)组成。三个虚部与旋转轴密切相关,而旋转角度影响...
4、欧拉角转换旋转矩阵 当然这个欧拉角的旋转顺序也是很有关系的,都是描述着一个坐标系到另一个坐标系的变化,也就是说一个坐标系相对于另一个坐标系的位姿可以使用一个旋转矩阵来表示。其旋转矩阵我们来看下推导如下: 5、四元数 四元数,又称欧拉参数,提供另外一种方法来表述三维旋转。四元数方法用在大多数的演...
任何一个旋转矩阵都可以用一个四元数来表示,并且一个四元数也可以转换成一个旋转矩阵。这个转换过程中,四元数和旋转矩阵的元素之间有一个固定的关系。 欧拉角是一种描述物体在三维空间中的方向的方法。欧拉角通常由三个角度(yaw、pitch、roll)组成,用于描述物体相对于旋转参考系的旋转。这些角度通常是绕物体的三个...
旋转矩阵、欧拉角、四元数比较 旋转矩阵、欧拉角、四元数主要用于:向量的旋转、坐标系之间的转换、角位移计算、方位的平滑插值计算 各方法比较 任务/性质 旋转矩阵 欧拉角 四元数 在坐标系间(物体和惯性)旋转点 能 不能(必须转换到矩阵) 不能(必须转换到矩阵) 连接或增量旋转 能,但经常比四元数慢,小心矩阵...