Integral [0, ∞) xe^(-x) = -e^(-x) 这就是求解0到正无穷范围内x e的-x次方的积分的过程。 总之,用换元法求解x e的-x次方的积分可以利用换元公式,这种方法使得计算过程变得简单有效。我们先将原函数f(x)视为du=f'(x)dx,然后用u 来替换原函数f(x),最后将u带入一般积分的构造方程中,结果就是...
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。 扩展资料: 把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)...
∫√xe∧-x( 根号x乘以e的负x次方)dx(其中积分下限为0,上限为正无穷) 先换元再分部积分法最后得到概率积分 可以利用伽玛函数或极坐标化为二重积分求值 结果=(√π)/2& x趋于负无穷时xe^(-x^2)sinx^2 lim(x->-∞)xe^(-x^2) = 0 无穷小 sin(x^2) 是有界函数; 无穷小 * 有界 = 三国游戏2新...
xe^(-x)积分0到正无穷是1。这道题先求∫xe^xdx的不定积分,用分部积分:∫xe^xdx =∫xde^x =xe^x-∫e^xdx =xe^x-e^x+C =(x-1)*e^x+C 所以原式=(1-1)*e^1-(0-1)*e^0 =0+1 =1 积分基本公式 1、∫0dx=c 2、∫x^udx=(x^u+1)/(u+1)+c 3、∫1/xdx=ln|x...
用分部积分法计算
∫xe^-xdx=∫-xd(e^-x)=-xe^-x+∫e^-xdx=-xe^(-x)-e^(-x)=(-x-1)e^-x (-x-1)e^-x在正无穷处值为0,则从0到正无穷的xe^-x的积分就是0-(-0-1)e^-0=1
本题所求的积分是0到正无穷xe的-x次方的积分,采用定积分的求解方法,首先需要找到一个适当的积分变换,将原积分转化成可以直接求解的形式。 4. 积分变换 由于正无穷是一个无限大的数,不易直接求解,因此我们可以考虑将积分区间进行变换,例如采用换元积分法、分部积分法等进行变换。在此处,我们可以尝试使用换元积分法...
∫xe^(-x)dx=-∫xde^(-x)=-[xe^(-x)-∫e^(-x)dx]= -e^(-x)-xe^(-x)积分区间从0到+∞时,为1
∫(0到+∞)xe^-x dx = -∫(0到+∞)x de^-x,分部积分法第一步 = -xe^-x + ∫(0到+∞)e^-x dx,分部积分法第二步 = -[lim(x->+∞)xe^-x - lim(x->0)xe^-x] - e^-x = 0 - [lim(x->+∞)e^-x - lim(x->0)e^-x]= -[0 - 1]= 1 ...
∵y=∫xe^(-x)dx=(-x-1)e^(-x)+C 取一个原函数F(x)=(-x-1)e^(-x)lim(x→+∞)F(x)=-x/e^x-1/e^x =lim(x→+∞)-1/e^x-0 =0 F(0)=-1 ∴∫[0,+∞]xe^(-x)dx=lim(x→+∞)F(x)-F(0)=1