MATLAB算法 | 龙格库塔算法 1.概述 本期介绍了一种超越隐喻的算法—龙格库塔算法Runge Kutta Method (RUN)。优化领域受到基于隐喻的“伪创新”或“花哨”优化器的影响。这些老套的方法大多模仿动物的搜索趋势,对优化过程本身的贡献很小。这些方法大多存在局部高效的性能、对简单问题的验证方法存在偏差、组件之间的交...
龙格-库塔(R-K)法的写法:就是不断调用微分方程组,迭代计算出对于K1,K2,...,最后再叠加。需要注意的是高阶微分方程,其原函数的导数也是通过迭代计算得到的 本人归纳了其套用 R-K 法的一般套路:3个函数、3个步骤——这也是MATLAB自带的求解方法的步骤 三个函数: Fun函数——用于存放一阶微分方程组 RK函数—...
1. matlab新建.m文件,编写龙格-库塔法求解函数 function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数) n=floor((b-a)/h); %求步数 x(1)=a;%时间起点 y(:,1)=y0;%赋初值,可以是向量,但是要注意维数 ...
龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从...
MATLAB 龙格库塔法 非刚性常微分方程的数值解法通常会用四阶龙格库塔算法,其matlab函数对应ode45。 对于dy/dx = f(x,y),y(0)=y0。 其四阶龙格库塔公式如下: 对于通常计算,四阶已经够用,四阶以上函数f(x,y)计算工作量大大增加而精度提高较慢。
在MATLAB中,可以通过编写函数来实现龙格库塔法。下面是一个用MATLAB实现龙格库塔法的简单例子: ```matlab function [t, y] = runge_kutta(f, tspan, y0, h) t0 = tspan(1); tf = tspan(2); t = t0:h:tf; n = length(t); y = zeros(1, n); y(1) = y0; for i = 1:n-1 k1 = f...
应用经典四阶龙格-库塔公式求解三阶常微分方程 clc;clear; Delta = 0.125; % 设置步长为0.125 % 初始条件 Y0=[0;1]; Y0 = [0; 0; 1]; % 修改为 Y0=[0;0;1]; time = 6; % 设定计算时间为 [t1, y1] = RKutta(Delta, Y0, time) ; ...
matlab练习程序(龙格库塔法) 非刚性常微分方程的数值解法通常会用四阶龙格库塔算法,其matlab函数对应ode45。 对于dy/dx = f(x,y),y(0)=y0。 其四阶龙格库塔公式如下: 对于通常计算,四阶已经够用,四阶以上函数f(x,y)计算工作量大大增加而精度提高较慢。
MATLAB 龙格库塔法 非刚性常微分方程的数值解法通常会用四阶龙格库塔算法,其matlab函数对应ode45。 对于dy/dx = f(x,y),y(0)=y0。 其四阶龙格库塔公式如下: 对于通常计算,四阶已经够用,四阶以上函数f(x,y)计算工作量大大增加而精度提高较慢。
气动学是研究气体在运动过程中的力学规律的学科,它在航空航天、汽车工程、火箭技术等领域都有着重要的应用。在气动学中,计算弹道轨迹是一个重要的课题,而基于龙格库塔算法的弹道轨迹计算方法是其中的一种常见方法。 龙格库塔算法是一种数值求解常微分方程组的方法,它通过迭代逼近的方式来计算微分方程的数值解。在弹道...