1. Monte Carlo (MC) 采样 1.1. Box-Muller 1.2. Rejection Sampling 2. Markov Chain (MC) 2.1. Markov Chain and Stationary Distribution 2.2. 基于Markov Chain采样 3. Markov Chain Monte Carlo (MCMC) and Metropolis-Hastings (MH) 3.1. Detailed Balance 3.2. MCMC 3.3. Metropolis-Hastings Sampling ...
2. 马尔科夫链蒙特卡罗 (Markov Chain Monte Carlo) 上⼀节所讨论的计算期望的重要性采样⽅法在⾼维空间中具有很⼤的局限性。因此,我们还需要⼀个更⼀般的框架,被称为马尔科夫链蒙特卡罗 (Markov chain Monte Carlo, MCMC),可以从⼀⼤类概率分布中进⾏采样,并且很好地应对样本空间维度的增长。 和...
一般而言,均匀分布Uniform(0,1)的样本容易生成,而常见的概率分布(连续或离散)都可以基于均匀分布的样本生成,例如正态分布可以通过Box-Muller变换得到. 但是像p(x,y,z)这样甚至更高维度分布的样本很难生成,而MCMC(Markov Chain Monte Carlo)和Gibbs Sampling算法就是解决这个问题的.让我们从马尔科夫链(Markov Chain...
MCMC(Markov Chain Monte Carlo)是一种利用马尔可夫链的采样技术。它通过构建满足详和平衡条件的转移矩阵来模拟目标分布的样本。在MCMC中,Metropolis-Hastings算法是一种改进的MCMC方法,通过调整接受率来提高采样效率。Gibbs Sampling是MCMC的一种特殊形式,适用于条件独立的随机变量。通过交替更新每个变量的...
区块链的scalability包括两个部分,一是存储,一是交易速度,针对这两个方面,很多的工作和项目在进行。一种方法是从架构层面来解决,它又有两种方式,一是分片(sharding),一是侧链(sidechain)。另一种探索是从数据结构和共识算法上来解决,它包括完全改变现状的区块结构,比如DAG。还包括不同的共识算法,比如POW,POS,DPOS,...
这些都会带来计算上的很大困难。这也是在很长的时期内,贝叶斯统计得不到快速发展的一个原因。1990年代MCMC(Markov Chain Monte Carlo ,马尔科夫链蒙特卡洛)计算方法引入到贝叶斯统计学之后,一举解决了这个计算的难题。可以说,近年来贝叶斯统计的蓬勃发展,特别是在各个学科的广泛应用和MCMC方法的使用有着极其密切的关系。
MCMC全称是Markov Chain & Monte Carlo。 在概率图的框架中属于近似推断中的不确定性推断,与之相对的有近似推断中的变分推断(variational Inference)。 MCMC本质是基于“采样”的“随机”“近似”。有三个关键词。 ①采样是说MCMC本质就是一种引入Markov Chain模型实现采样任务的一种方法,本质是一种采样方法(Method...
Markov Chain & Monte Carlo (MCMC)是推断(Inference)中近似推断中的随机推断。 Monte Carlo Method Monte Carlo Method是对一类随机方法的特性的概括,即那些“采样越多,越近似最优解”的方法[1]。 Monte Carlo Method是一种基于采样的随机近似方法。推断的任务是求后验概率(posterior probability),其中为观测变量(...
Markov chain Monte Carlo (MCMC) sampling methods to determine optimal mod- els, model resolution and model choice for Earth Science problems. Mar. Pet. Geol. 26 (4), 525-535.Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., Stephenson, J., 2009. Markov chain Monte Carlo (...
马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布pp的马尔科夫链对目标分布pp进行采样. 预备知识 学习MCMC需要以下预备知识 条件分布: MCMC常常被用于从条件分布中采样. 蒙特卡洛估计(Monte Carlo estimation) ...