有了以上背景知识,大家大概能猜到MCMC方法是如何运作的了:即通过构造Markov chain来实现的Monte Carlo方法。具体来说,是构造一个Markov chain,使得其平稳分布是目标分布,然后在该chain上游走,达到采样的目的。那么问题来了,给定目标分布,如何构造Markov chain使得其平稳分布即为目标分布? 其实构造方法不止一种。我们接...
因此,我们还需要⼀个更⼀般的框架,被称为马尔科夫链蒙特卡罗 (Markov chain Monte Carlo, MCMC),可以从⼀⼤类概率分布中进⾏采样,并且很好地应对样本空间维度的增长。 和重要性采样相同,我们从提议分布q中采样,但是我们记录的是当前状态\boldsymbol z^{(\tau)},以及依赖于这个当前状态的提议分布q(\bold...
MCMC本质是基于“采样”的“随机”“近似”。有三个关键词。 ①采样是说MCMC本质就是一种引入Markov Chain模型实现采样任务的一种方法,本质是一种采样方法(Method)。 ②随机是说MCMC的主要实现方法是找到一个随机矩阵(stochastic matrix),也就是状态转移矩阵(也可以是状态转移概率密度函数),使得 该Markov Chain最终...
Markov Chain & Monte Carlo (MCMC)是推断(Inference)中近似推断中的随机推断。 Monte Carlo Method Monte Carlo Method是对一类随机方法的特性的概括,即那些“采样越多,越近似最优解”的方法[1]。 Monte Carlo Method是一种基于采样的随机近似方法。推断的任务是求后验概率(posterior probability),其中为观测变量(...
区块链的scalability包括两个部分,一是存储,一是交易速度,针对这两个方面,很多的工作和项目在进行。一种方法是从架构层面来解决,它又有两种方式,一是分片(sharding),一是侧链(sidechain)。另一种探索是从数据结构和共识算法上来解决,它包括完全改变现状的区块结构,比如DAG。还包括不同的共识算法,比如POW,POS,DPOS,...
这些都会带来计算上的很大困难。这也是在很长的时期内,贝叶斯统计得不到快速发展的一个原因。1990年代MCMC(Markov Chain Monte Carlo ,马尔科夫链蒙特卡洛)计算方法引入到贝叶斯统计学之后,一举解决了这个计算的难题。可以说,近年来贝叶斯统计的蓬勃发展,特别是在各个学科的广泛应用和MCMC方法的使用有着极其密切的关系。
3.MCMC马尔可夫链蒙特卡洛MCMC是使用马尔可夫链的蒙特卡罗方法。其思想是...MarkovChain。1.MonteCarlo(蒙特卡罗方法):蒙特卡罗方法是指通过构造符合一定规则的随机数来解决数学上的各种问题,本质是根据采样来做估计期望(estimate expected 蒙特卡罗(Monte Carlo)方法简介...
Monte Carlo方法也称为统计模型方法,是以概率统计理论为指导的一类数值计算方法。 但是在加上Markov chain 会变成MCMC算法,也是贝叶斯统计推断中的一个非常重要的算法 贝叶斯 贝叶斯推断(Bayesian inference)是对给定的样本数据加统计模型,并由模型参数或不可观察的随机变量的后验分布来进行统计推断的过程。
马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布pp的马尔科夫链对目标分布pp进行采样. 预备知识 学习MCMC需要以下预备知识 条件分布: MCMC常常被用于从条件分布中采样. 蒙特卡洛估计(Monte Carlo estimation) ...
MCMC本质是在贝叶斯定理基础上,通过连续采样和状态转移来估计参数的后验分布。Monte Carlo方法允许我们通过随机抽样来近似复杂分布的特征,而Markov Chain则确保每次转移状态都基于当前状态的概率。简单来说,MCMC通过不断迭代,从初始状态出发,每次根据一定的转移概率跳转到下一个状态,最终积累的信息能够代表...