We present an overview of Markov chain Monte Carlo, a sampling method for model inference and uncertainty quantification. We focus on the Bayesian approach to MCMC, which allows us to estimate the posterior distribution of model parameters, without needing to know the normalising constant in Bayes'...
有了以上背景知识,大家大概能猜到MCMC方法是如何运作的了:即通过构造Markov chain来实现的Monte Carlo方法。具体来说,是构造一个Markov chain,使得其平稳分布是目标分布,然后在该chain上游走,达到采样的目的。那么问题来了,给定目标分布,如何构造Markov chain使得其平稳分布即为目标分布? 其实构造方法不止一种。我们接...
Markov Chain & Monte Carlo (MCMC)是推断(Inference)中近似推断中的随机推断。 Monte Carlo Method Monte Carlo Method是对一类随机方法的特性的概括,即那些“采样越多,越近似最优解”的方法[1]。 Monte Carlo Method是一种基于采样的随机近似方法。推断的任务是求后验概率(posterior probability)P(Z|X),其中X...
Markov Chain Mote Carlo(MCMC) 要用MCMC方法,必须要找到一个平稳分布是π(i)的马氏链,更为具体一点就是 通过已知的平稳分布π(i)来确定一个马氏链转移概率p(i,j)(马氏链除了定义状态以外就是定义转移概率了),使得该马氏链在这个转移概率下经过长时间转移后有平稳分布π(i)。目前我们可以知道的平稳分布π(i)...
Although these methods are technically outside the scope of this chapter, the separation is somewhat artificial because, in practice, all MCMC methods in one way or another make some use of classical simulation Markov chains Markov chain Monte Carlo is a method to sample a given multivariate ...
MCMC的本质是通过Markov Chain的stationary distribution(平稳分布)来指导随机采样的一种方法。说到MCMC, 首先要先了解什么是Monte Carlo和Markov Chain。 1. Monte Carlo (蒙特卡罗方法): 蒙特卡罗方法是指通过构造符合一定规则的随机数来解决数学上的各种问题,本质是根据采样来做估计期望(estimate exp... 查看原文 ...
Summary Markov chains with a prescribed stationary distribution should be constructed in order to apply Markov Chain Monte Carlo (MCMC) methods. This chapter focuses on the Metropolis—Hastings method, which is a popular method to solve this problem. The resulting algorithm is similar to the ...
马尔可夫链蒙特卡罗法(Markov Chain Monte Carlo,MCMC) 文章目录 1. 蒙特卡罗法 2. 马尔可夫链 3. 马尔可夫链蒙特卡罗法 4. Metropolis-Hastings 算法 5. 吉布斯抽样 蒙特卡罗法(Monte Carlo method),也称为统计模拟方法(statistical simulation method),是通过从概率模型的随机抽样进行近似数值计算的方法 马尔可...
机器学习-白板推导系列-蒙特卡洛方法2(Monte Carlo Method)-马尔可夫链(Markov Chain) P2 - 17:17 平稳分布 P7 详解平稳分布 P3 MCMC 算法 机器学习-白板推导系列-蒙特卡洛方法3(Monte Carlo Method)-MH采样(Metropolis-Hastings) P3 - 11:06 Proposal 机器学习-白板推导系列-蒙特卡洛方法3(Monte Carlo Method)-...
这些都会带来计算上的很大困难。这也是在很长的时期内,贝叶斯统计得不到快速发展的一个原因。1990年代MCMC(Markov Chain Monte Carlo ,马尔科夫链蒙特卡洛)计算方法引入到贝叶斯统计学之后,一举解决了这个计算的难题。可以说,近年来贝叶斯统计的蓬勃发展,特别是在各个学科的广泛应用和MCMC方法的使用有着极其密切的关系。