一个秩1的矩阵最多有一个特征方向,而一个 特征方向上只有一个特征值。在考研数学线性代数中,秩为1的矩阵具有特殊意义,往年常考察其相关知识点。其一是秩为 1 矩阵的特征值,特征值的计算是一个基本考点,其计算方法很多,包括:根据特征值的定义进行计算、由特征方程计算、利用特征值的各种性质进行...
[线性代数]已知矩阵A的秩为1,求A的n次方, 视频播放量 11226、弹幕量 6、点赞数 68、投硬币枚数 18、收藏人数 32、转发人数 17, 视频作者 知识点世界, 作者简介 ,相关视频:【线性代数】非齐次线性方程组,微积分三角形消失之谜(人人都能听懂),每日一题--蒲丰投针:圆周率
非零阵。所有的n阶矩阵的行列式都为0。而伴随矩阵的元素是n1阶子式,所以肯定是非零阵。
矩阵的秩的定义是:若存在K阶子式不为0,对于任意K+1阶子式皆为0,则称K为矩阵的秩。向量组的秩定义为向量组中极大线性无关组所含向量的数目。接下来介绍三个定理:1,矩阵A的行列式不为0的条件是A的行或列向量线性无关;2,线性无关的向量组,即使添加向量后,仍保持线性无关;3,r个n维列...
因此,当矩阵的秩小于其行数或列数时,我们可以说该矩阵的行列式为0,这是矩阵理论中的一个重要结论。另外,矩阵通常用来表示线性变换,其行列式的值可以反映线性变换的缩放因子。当行列式为0时,表示该线性变换将空间压缩到一个更低维度的空间。综上所述,秩为n-1(n为矩阵的行数或列数)的方阵,...
对于秩为1的n阶矩阵,零是其n重或n-1重特征值,如果是n-1重,则非零特征值是矩阵的主对角线元素之和;另外还看到,秩为1的矩阵可以分解为一个非零列向量与另一个非零列向量的转置的乘积,这两个向量的内积即是非零特征值;秩为1的矩阵对应的齐次线性方程组的基础解系含n-1个解向量。秩等于...
综上所述,当A的秩为n-1时,其伴随矩阵A*的秩为1,这是因为伴随矩阵A*中至少包含一个非零元素,而AA*的性质则进一步确认了A*的秩只能是1。因此,我们可以得出结论,当A的秩为n-1时,伴随矩阵A*的秩必定为1。这一结论对矩阵理论和线性代数的应用有着重要意义,它不仅揭示了矩阵秩与伴随矩阵秩...
我们能够得知矩阵A中必存在一个非零的n-1阶子式,从而在A*中也必有一个元素不等于0。综上所述,通过矩阵AA*的性质与矩阵A的秩之间的关系,我们可以推导出伴随矩阵A*的秩为1,进一步揭示了矩阵秩与伴随矩阵秩之间的内在联系,为理解线性代数中的矩阵运算提供了理论基础。
n阶矩阵秩为1,那么应该是0至少为n-1重特征值,因为n可能是为重特征值。在矩阵的秩为1的时候,对角线元素之和为0的矩阵,那么0就是它的n重特征值,“秩为r,0为n-r重特征”适用于对称矩阵,而问题中的n阶矩阵并没有说明是对称矩阵,所以需要视情况而定。
任何一个秩一矩阵都可以写成一个列向量和一个行向量的乘积,你这个矩阵显然可以写成(3,1)转置乘以(1,3)。而将这个两个向量反过来相乘得到(1,3)乘以(3,1)的转置=6,从而这个矩阵的平方=6乘以这个矩阵,从而其n次方=6的(n-1)次方乘以这个矩阵。