已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=___.
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条 已知y1=e3x-xe2x,y2=ex-xe2
已知y1=e3x –xe2x,y2=ex –xe2x,y3= –xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解y= 。 答案 答案:解:y1-y2=e3x , y2-y3 =ex是对应齐次方程的解.由分析知:故:原方程通解为: 结果四 题目 已知y 1 =e 3x -xe 2x ,y 2 =e x -xe 2x ,y 3 =-xe 2x 是某二阶...
已知y1=e3x−xe2x,y2=ex−xe2x,y3=−xe2x是某个二阶常系数线性微分方程三个解,则满足y(0)=0,y′(0)=1方程的解为___.
百度试题 结果1 题目已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的三个解,则该方程的通解为___。相关知识点: 试题来源: 解析 正确答案:y=C1e3x+C2ex-xe2x 反馈 收藏
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解y=___.
已知y1=e3x−xe2x,y2=ex−xe2x,y3=−xe2x是某个二阶常系数线性微分方程三个解,则满足y(0)=0,y′(0)=1方程的解为___.
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解y=___.
由线性微分方程解的性质可得,y1-y3 与 y2-y3 为对应的二阶常系数线性齐次微分方程两个解.因为 y1-y3=e3x 与 y2-y3=ex 为线性无关的,故由解的结构定理,该方程的通解为 y=C1e3x+C2ex -xe2x.把初始条...
填空题已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=___。 参考答案:正确答案:y=C1e3x+C2ex 延伸阅读 你可能感兴趣的试题 1.填空题若数列(a1+a2)+(a3+a4)+…+(a1+a2n)+…发散,则级数 an___。