可以解得原矩阵A=PλP^(-1)设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。反过来,代数基本定理说...
求解矩阵的特征值和特征向量可以通过以下步骤进行:1. 计算矩阵的特征多项式:先将矩阵A表示为:A = [a11 a12 ... a1n a21 a22 ... a2n ... an1 an2 ... ann]然后,计算特征多项式P(λ) = det(λI - A),其中λ是待求的特征值,I是单位矩阵。2. 求解特征多项式的根:解...
1、首先,确保给定矩阵是实对称矩阵。实对称矩阵满足矩阵的转置等于矩阵本身。2、使用特征值分解的方法,将实对称矩阵表示为特征向量和特征值的乘积形式。特征向量构成的正交矩阵Q,和对角矩阵Λ,A = QΛQ^T,其中,Q是特征向量组成的矩阵,Λ是特征值对角矩阵。3、求解特征值可以转化为求解矩阵A的特...
令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则可求出属于特征值的...
提供两种解法,方法一是找规律用数学归纳法,前提是找得到A^n是多少。方法二是对低阶矩阵都可用的,用到的是带余除法,待定系数法,哈密顿凯莱定理。除此之外,对实对称矩阵可以利用正交相似对角化求解,对普通实矩阵可以用若尔当标准型求解。方法一 方法二 ...
因为特征方程等于:|λE-A|={[(λ+2),0,4],[-1,λ-1,-1],[-1,0,λ-3]}=0 计算过程:(λ-2)*(λ+2)*(λ-3)+4(λ-2)=(λ-2)*[(λ+2)*(λ-3)+4]=(λ-2)*[λ*λ-λ-2]=(λ-2)*(λ-2)*(λ+1)=(λ-2)^2*(λ+1)所以说...
方法一:实对称矩阵不同特征值对应的特征向量相互正交,由此可得第三个特征值对应的特征向量,进一步可得到第三个特征值。方法二:实对称矩阵所有特征值的和等于矩阵对角线上元素的代数和,所有特征值的积等于矩阵的行列式的值。据此可得第三个特征值。实对称矩阵A的不同特征值对应的特征向量是正交的。实...
特征行列式:|λI-A|=(λ-k1)(λ-k2)...(λ-kn)其中k1,k2,...,kn是n个特征值令上式中的λ=0,得到 |-A|=(0-k1)(0-k2)...(0-kn)即(-1)^n|A|=(-1)^nk1k2...kn 则|A|=k1k2...kn
有无穷多解:当且仅当增广矩阵的简化阶梯形式中有至少一个自由变量,且没有任何 矛盾方程时,方程组有无穷多解。在这种情况下,我们需要找到满足b-5 = 0且a-1 = 0的a和b值。这意味着a = 1且b = 5。在这种情况下,我们可以通过回代法求解方程组:x4 = 0 x3 = 自由变量(任意实数,用t...