设向量组`\alpha _1,\alpha _2,\alpha _3`线性无关,则下列向量组中线性无关的是( )A.`\alpha _1 - \alpha _2, \al
设向量组`\alpha_1,\alpha_2,\alpha_3`线性无关,向量`\beta_1`可由向量组`\alpha_1,\alpha_2,\alpha_3`线性表示,而向量`\beta_2`不能由向量组`\alpha_1,\alpha_2,\alpha_3`线性表示,则对于任意的常数`k`,必有( ) A.`\alpha_1,\alpha_2,\alpha_3,k\beta_1+\beta_2`线性无关; B....
设向量组`\alpha_1,\alpha_2,\alpha_3`线性无关,向量`\beta_1`可由向量组`\alpha_1,\alpha_2,\alpha_3`线性表示,而向量`\beta_2`不能由向量组`\alpha_1,\alpha_2,\alpha_3`线性表示,则对于任意的常数`k`,必有( ) A.`\alpha_1,\alpha_2,\alpha_3,k\beta_1+\beta_2`线性无关; B....
A. \( \beta \) 能由向量组 \( \alpha_{1}\),\( \alpha_{2}\),\( \alpha_{3}\),\( \alpha_{4} \) 线性表示; B. \( \alpha_{1} \) 能由向量组 \( \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta \) 线性表示; C. 向量组 \( \alpha_{1}, \alpha_{2}, \alp...
向量组 $\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1}$ 线性无关; B. 向量组 $\alpha_{1},2\alpha_{2},3\alpha_{3}$ 线性无关; C. 向量组 $\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}-\alpha_{1}$ 线性无关; D. ...
4.单项选择题若向量组α,β,γ线性无关;α,β,δ线性相关,则() A.α必可由β,γ,δ线性表示 B.β必不可由α,γ,δ线性表示 C.δ可由α,β,γ线性表示 D. δ不可由α,β,γ线性表示 点击查看答案&解析 5.问答题已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,...
$\alpha_{1},\alpha_{2},\alpha_{3},k\beta_{1}+\beta_{2}$线性无关; B. $\alpha_{1},\alpha_{2},\alpha_{3},k\beta_{1}+\beta_{2}$线性相关; C. $\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1}+k\beta_{2}$线性无关; D. $\alpha_{1},\alpha_{2},\alpha_{...
试题来源: 解析 如果`\alpha _1,\alpha _2, \ldots ,\alpha _s`线性相关,`\alpha_s`不能用`\alpha _1,\alpha _2, \ldots ,\alpha _{s - 1}`线性表出,则`\alpha _1,\alpha _2, \ldots ,\alpha _{s - 1}`线性相关; 反馈 收藏 ...
A. \( {\alpha _1},{\alpha _2},...,{\alpha _s} \)中至少有一个由\( r \)个向量组成的部分组线性无关 B. \( {\alpha _1},{\alpha _2},...,{\alpha _s} \)中存在由\( r + 1 \)个向量组成的部分组线性无关 C. \( {\alpha _1},{\alpha _2},...,{\alpha ...