若3 维向量α4 不可以由向量组 α1,α2,α3线性表出,则( )。 A. 向量组α1,α2.,α3线性无关B. 向量组α1+α4,α2+α4,α3+α4线性相关C. 向量组α1+α4,α2+α4,α3+α4线性无关D. 向量组α1,α2.,α3线性相关 点击查看答案&解析手机看题 你可能感兴趣的试题 单项选择题 向量空...
若向量\(\beta\)可由向量组\(\alpha_{1},\alpha_{2},\cdots,\alpha_{m}\)线性表示,则下列结论正确的是()。相关知识点: 试题来源: 解析 、存在常数\(k_{1},k_{2},\cdots,k_{m}\),使得\(\beta=k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}\) ...
若,\alpha _{1项类同α _2,α _2线性相关,则向量组数小最pha _1,数小最pha _1,$3\alpha _{3sejdah关组为___.
若向量\(\beta\)可由向量组\(\alpha_{1},\alpha_{2},\cdots,\alpha_{m}\)线性表示,但不能由向量组\((I):\alpha_{1},\alpha_{2},\cdots,\alpha_{m-1}\)线性表示,记向量组\((II):\alpha_{1},\alpha_{2},\cdots,\alpha_{m-1},\beta\),则下列结论正确的是()。
2 + x 3 ) \ast \alpha 3 = 0 $$.因 为向量组α1,a2,a3线性无关,所以上式成立需要x1 $$ + x 3 = 0 , x 1 + x 2 = 0 x 1 2 + x 3 = 0 $$成立.可得$$ x 1 = x 2 = $$ $$ x 3 = 0 $$,与原假设矛盾.因此向量组$$ \alpha 1 + \alpha 2 , \alpha 2 +...
【解析】 证由 $$ \alpha _ { 1 } $$, $$ \alpha _ { 2 } $$,..., $$ \alpha $$,β线性相关知,存在一组不全为零的数 $$ k _ { 2 } $$, $$ k _ { 2 } $$,..., $$ k _ { 1 } $$, k.使得 $$ k _ { 1 } \alpha _ { 1 } + k _ { 2 } \a...
若线性相关,求一组相关系数:(1)$$ \alpha _ { 1 } = ( 1 , 1 , - 1 , 1 ) \alpha _ { 2 } = ( 1 , - 1 , 2 , - 1 ) , \alpha _ { 3 } = ( 3 , 1 , 0 , 1 ) ; $$(2)$$ \alpha _ { 1 } = ( 1 , 0 , 2 , 3 ) , \alpha _ { 2 } = ( 1 , ...
若船里万吴东泊门 船客到声钟半夜,\alpha S2)4HN(无关,而向量组风春角口1),α _2lacissalc _3线性相关,流细惜声无眼泉应反核{1},\alp镜
若向量\(\beta\)可由向量组\(\alpha_{1},\alpha_{2},\cdots,\alpha_{m}\)线性表示,则下列结论正确的是()。A 、存在常数\(k_{1},k_{2},\cdots,k_{m}\),使得\(\beta=k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}\)...
若3 维向量α4 不可以由向量组 α1,α2,α3线性表出,则( )。 A. 向量组α1,α2.,α3线性无关B. 向量组α1+α4,α2+α4,α3+α4线性相关C. 向量组α1+α4,α2+α4,α3+α4线性无关D. 向量组α1,α2.,α3线性相关 点击查看答案&解析手机看题 你可能感兴趣的试题 单项选择题 向量空...