基本导数公式(y:原函数;y':导函数): 1、y=c,y'=0(c为常数)。 2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。 3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。 4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。 5、y=sinx,y'=cosx。 6、y=cosx,y'=-sinx
基本导数公式(y:原函数;y':导函数): 1、y=c,y'=0(c为常数)。 2、y=,y'=μ(μ为常数且μ≠0)。 3、y=,y'=lna;y=,y'=。 4、y=logax,y'=(a>0且a≠1);y=lnx,y'=。 5、y=sinx,y'=cosx。 6、y=cosx,y'=-sinx。 7、y=tanx,y'==。
求导公式:y=c(c为常数) y'=0、y=x^n y'=nx^(n-1) ;运算法则:加(减)法则[f(x)+g(x)]'=f(x)'+g(x)'。 1导数公式 1).y=a^x y'=a^xlna y=e^x y'=e^x 2).y=logax y'=logae/x y=lnx y'=1/x 3).y=sinx y'=cosx 4).y=cosx y'=-sinx 5).y=tanx y'=1/cos^2x...
导数八个公式和运算法则 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=...
1 导数公式如下:1、y=c(c为常数) y'=0;2、y=x^n y'=nx^(n-1);3、y=a^x y'=a^xlna;y=e^x y'=e^x;4、y=logax y'=logae/x;5、y=sinx y'=cosx;6、y=cosx y'=-sinx;7、y=tanx y'=1/cos^2x;8、y=cotx y'=-1/sin...
函数导数公式这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/...
导数基本公式如下: 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna 4.y=logax y'=logae/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=e^x y'=e^x 10.y=lnx y'=1/x 导数的基本性质: (1)若导数...
三、导数的运算法则与推导 1. [f(x)\pm g(x)]^{'}=f(x)^{'}\pm g(x)^{'} 2.[f(x)\cdot g(x)]^{'}=f(x)^{'}\cdot g(x)+f(x)\cdot g^{'}(x) 3.[\frac{f(x)}{g(x)}]^{'}=\frac{f^{'}(x)\cdot g(x)-f(x)\cdot g^{'}(x)}{g^{2}(x)} ...
一、导数的定义 AB弦的斜率是 f(x+h)−f(x)x+h−x=f(x+h)−f(x)h ,当B点不断向A点靠近时,AB弦的斜率就变成了f(x) 在点A处的切线斜率(可以类比平均速度和瞬时速度),可以得到求导公式: f′(x)=limh→0f(x+h)−f(x)h (Differentiation from first principle) 也可以用如下公式求 ...