Step by step video & image solution for If int((log_(ex)e)(log_(e^(2)x)e)log_(e^(3)x) e))1/x dx = Alog |1+logx|+B log |2+log x|+C log |3+ logx| +D then A-B+C is equal to by Maths experts to help you in doubts & scoring excellent marks in Class 12 exams...
Central limit theorem: Covergence in the norm$$left| u right|left( {intlimits_{ - infty }^infty {u^2 left( x right)e^{frac{{x^2 }}{2}} dx} } right)^{{raise0.7exhbox{$1$} !mathord{left/ {vphantom {1 2}}right... ...
frac%7B2%5Ex%7D%7Bln2%7D%20%2Bfrac%7B1%7D%7B2%7D%20x%5E2%2Bx" src="https://tiku-data.cdn.bcebos.com/pic/1_6c3cae3879396dab0b6bf4ac5a4d5f2f.jpg?auth_key=2356118158-0-0-559dae735636d4df4b459e64e4686304" data-width="234" data-height="23" style="width: 234px; ...
If ∫28f(x)dx=6, evaluate ∫ln2ln83ex*f(ex)dx.There are 2 steps to solve this one. Solution Share Step 1 given integral as followsView the full answer Step 2 Unlock Answer UnlockPrevious question Next questionNot the question you’re looking for? Post any...
18.以下命题:①随机变量ξ服从正态分布N.若P=0.023.则P=0.954,②函数f(x)=ex+$\frac{1}{2}$x-2的零点所在的区间是(1.2),③“|x|>1 的充分不必要条件是“x>1 ,④$\int 0^π{|{cosx}|}$dx=0.其中假命题的个数是( )A.0B.1C.2D.3
View Solution Evaluate∫log3log1/3tan(ex−1ex+1)dx View Solution Doubtnut is No.1 Study App and Learning App with Instant Video Solutions for NCERT Class 6, Class 7, Class 8, Class 9, Class 10, Class 11 and Class 12, IIT JEE prep, NEET preparation and CBSE, UP Board, Bihar Boa...
Central limit theorem: Covergence in the norm\n$$\\left\\| u ight\\|\\left( {\\int\\limits_{ - \\infty }^\\infty {u^2 \\left( x ight)e^{\\frac{{x^2 }}{2}} dx} } ight)^{{aise0.7ex\\hbox{$1$} \\!\\mathord{\\left/ {\\vphantom {1 2}}ight.\\k... Centr...
Central limit theorem: Covergence in the norm\n$$\\left\\| u ight\\|\\left( {\\int\\limits_{ - \\infty }^\\infty {u^2 \\left( x ight)e^{\\frac{{x^2 }}{2}} dx} } ight)^{{aise0.7ex\\hbox{$1$} \\!\\mathord{\\left/ {\\vphantom {1 2}}ight.\\k... ...
Evaluate: int(x^2+1)/(x(x^2-1))dx 04:50 Evaluate: int(sinx)/(sin4x)dx 11:00 Evaluate int(log(ex)e*log(e^(2)x)e*log(e^(3)x)e)/(x)dx. 09:19 Evaluate: inte^(3logx)(x^4+1)^(-1)dx 01:50 Evaluate: int(dx)/(x^(2/3)(1+x^(2/3))) 01:40 lim(x->0)1/...