The area of the region bounded between the curves y=e||x|In|x∣∣,x2+y2−2(|x|+|y|)+1≥0 and X-axis where |x|≤1, if α is the x-coordinate of the point of intersection of curves in 1st quadrant, is A 4[∫α0exInxdx+∫1α(1−√1−(x−1)2)dx] B 4[∫...
Answer to: The series et = 1+x+ x2/2! + x3/3! + x4/4! + x5/5! --- converges to ex for all x. Find a series for int ex dx. By signing up, you'll get...
若int f(x)dx=2^x+x+1+C,则f(x)=( )A. frac%7B2%5Ex%7D%7Bln2%7D%20%2Bfrac%7B1%7D%7B2%7D%20x%5E2%2Bx" src="https://tiku-data.cdn.bcebos.com/pic/1_6c3cae3879396dab0b6bf4ac5a4d5f2f.jpg?auth_key=2356118158-0-0-559dae735636d4df4b459e64e4686304" dat...
Central limit theorem: Covergence in the norm$$left| u right|left( {intlimits_{ - infty }^infty {u^2 left( x right)e^{frac{{x^2 }}{2}} dx} } right)^{{raise0.7exhbox{$1$} !mathord{left/ {vphantom {1 2}}right... ...
1. From0toαfor the curvey=exlnx 2. Fromαto1for the circle. The area can be expressed as: A=∫α0exlnxdx+∫1α(1−√1−(x−1)2)dx Step 5: Calculate the integrals 1. The first integral can be simplified: ∫α0exlnxdx=∫α0xxdx ...
Central limit theorem: Covergence in the norm$$left| u right|left( {intlimits_{ - infty }^infty {u^2 left( x right)e^{frac{{x^2 }}{2}} dx} } right)^{{raise0.7exhbox{$1$} !mathord{left/ {vphantom {1 2}}right... S Fomin - 《Journal of Soviet Mathematics》 被引...