z=x^2+y^2,表示开口向上的抛物面.y=0平面内的z=x^2绕z轴旋转得到. z^2=x^2+y^2,表示两个在原点处相对的圆锥面.y=0平面内的z=x绕z轴旋转可以得到. z=根号下x^2+y^2,表示上面那个图形的上半部分,就是顶点在原点的圆锥面,y=0平面内的z=|x|绕z轴旋转可以得到. 分析总结。 z根号...
这是一个圆锥面(旋转曲面的一种)。由z=√(x2+y2)可知,z≥0,故开口向上。当z=0时,x=0,y=0,可知圆锥面的顶点位于坐标原点。该曲面由直线z=x或z=y绕z轴旋转一周得来,且只取上半部分。
令u=x/y,则 dx/dy=u+ydu/dy 原式化为 u+ydu/dy=-u/y+2u+1(即变量y 因变量u的一次线性非齐次方程) 整理得 du/dy-(1/y^2-1/y)u=1/y 先求齐次方程 du/dy-(1/y^2-1/y)=0 可得u=Cye^(1/y) (C为常数) 再利用常数变易法设u=C(y)ye^(1/y) 带入原非齐...
曲面Z=根号下x^2+y^2是什么 答案 椭圆锥面:-|||-2-|||-2-|||-2-|||-2-|||-a-|||-62-|||-=-|||-平面z=t(t≠0)与曲面的-|||-0-|||-交线是:椭圆;-|||-y-|||-平面z=t(t=0)与曲面的-|||-交线是:原点.-|||-x你说的题目,属于【对顶圆锥的一半】.---也就是圆锥面...
根据给定的公式z=根号x^2+y^2,我们可以看出这是一个曲面方程。曲面方程描述了空间中的一个表面形状。具体来说,这个曲面是一个旋转曲面,它是由绕Z轴旋转的曲线生成的。我们可以将z=根号x^2+y^2写成z=f(x,y)的形式,其中f(x,y)=根号x^2+y^2。由于该公式只涉及到x和y的平方和的平方根,因此该曲面是...
解析 连续不连续是看左右极限是否相等再判断中点的,所以说连续;但求一下偏导你会发现分母是根号(X^2+Y^2),当X,Y同时为零时,导函数无意义,所以两个偏导不存在;肯定不可微;所以选择C .结果一 题目 z= √( x2+y2) 在点(0,0)处 A.不连续 B.偏导数存在C.沿任意方向的方向导数存在D.可微 ...
简单计算一下即可,答案如图所示 连续
在上述方程组中消去z得到的是圆柱面(x-1/2)^2+y^2=1/4,它在xoy面上的投影曲线是以(1/2, 0)为圆心、半径为1/2的圆周。z=根号下x^2+y^2表示一个圆锥面(旋转曲面的一种)。由z=√(x2+y2)可知,z≥0,故开口向上复。当z=0时,x=0,y=0,可知圆锥面的顶点位于坐标原点。该...
函数z=根号下(x^2+y^2)在(0,0)点处()A.不连续 B.偏导数存在 C.任意方向导数存在 D.可微请问这里的偏导数求得时候发现对x来讲,在零的左侧是-1,在领
x的偏导数(1/2)(x²+y²)(-1/2)(2x)=x/√(x²+y²)y的偏导数(1.2)(x²+y²)(-1/2)(2y)=y/√(x²+y²)x方向的偏导,设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(...