∴x>ln(1+x). 解法二:令f(x)=x-ln(x+1). ∵x>0,f′(x)=1-=>0, 又因为函数f(x)在x=0处连续, ∴f(x)在[0,+∞)上是增函数. 从而当x〉0时, f(x)=x-ln(1+x)〉f(0)=0。 ∴x>ln(1+x). 解法三:在同一坐标系中画出函数y=x与y=ln(1+x)的图象,可见x〉0时,x〉ln(1+x...
【解析】令f(x)=x-ln(x+1)由对数函数有意义的条件, x+10∴x-1 .当 x≤-1 时,ln(x+1)无意义,无法比较大小当 x-1 时, f'(x)=1-1/(x+1)=x/(x+1)∴∴当 -1x0 时, f'(x)0 ,f(x)单调递减当 x0 时, f'(x)0 ,f(x)单调递增∵f(0)=0-0=0∴f(x) 在 (-1,+∞) 上...
x-ln(1+x)≥ 0 x≥ln(1+x)令f(x)=ln(1+x)-x f'(x)=1/(1+x)-1≤0 (0≤x≤1)因此函数f(x)在0≤x≤1递减,注意不是单减,除去x=0这个点才是单减。因此f(x)=ln(1+x)-x≤0,(等于当且仅当x=0时成立)。即ln(1+x)≤x,(等于当且仅当x=0时成立)。性质1 ...
1. 函数f(x) = x - ln(1+x) 满足 f(x) ≥ f(0) = 0。2. 由此可得 x - ln(1+x) ≥ 0。3. 进一步推导得到 x ≥ ln(1+x)。4. 定义函数 f(x) = ln(1+x) - x,求导得 f'(x) = 1/(1+x) - 1。5. 当 0 ≤ x ≤ 1 时,f'(x) ≤ 0,说明函数 f(x) ...
为什么x与ln(1+x)是等阶无穷小?因为x→0时,两者都是无穷小,两者比值的极限是1。由等价无穷小的...
x>ln(1+x) 【答案】x>ln(1+x) 【解析】解法一:令x=1,则有1>ln2, ∴x>ln(1+x). 解法二:令f(x)=x-ln(x+1). ∵x>0,f′(x)=1-=>0, 又因为函数f(x)在x=0处连续, ∴f(x)在[0,+∞)上是增函数. 从而当x>0时, f(x)=x -ln(1+x)>f(0)=0. ∴x>ln(1+x)....
相关知识点: 试题来源: 解析 【解析】 令f(x)=x-ln (1+x),x∈ (1,+∞ ), 则f'(x)=1-1(1+x)=(1+x) 0, ∴ f(x)在(1,+∞ )上单调递增, ∴ f(x) f(1)=1-ln 2 0, ∴ x ln (1+x). 【答案】反馈 收藏
ln(1+x)和x比较大小,在定义域为R上 y=ln(1+x)的定义域为1+x>0,即x>-1;y=x定义域是R;因此只能在(-1,+∞)比较.y'=1/(1+x),故y'(0)=1;即y=ln(1+x)在(0,0)处的切线与直线y=x重合;而当x≠0时曲线y=ln(1+x)都 在直线y=x的下面.故可断言:x=0时ln(1+x)=x...
泰勒展开式是函数在某一点的无穷级数展开,通常用来近似计算复杂函数的值。对于自然对数函数 ln(1+x),其泰勒展开式可以在 x=0 处得到,并被广泛运用于数学和工程领域。自然对数函数 ln(1+x) 在 x=0 处的泰勒展开式为:ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ... + (-1)...
等价无穷小是 指当自变量趋于某一值时,两个函数的比值趋于 1。本文将讨论 ex–1 与 x 等价无穷小的证明。 2.等价无穷小的定义 设函数 f(x) 和 g(x) 在 x0 的某邻域内有定义,如果当 x 趋于 x0 时,f(x)/g(x) 的极限存在或为无穷大,则称函数 f(x) 与 g(x) 在 x0 处为等价无穷小。 3...