Hello, I'm trying to train SwinV2-B on some images with resolution of 1280x1280, but I'm having trouble making it work due to the window reverse operation. Are there any guidelines on applying SwinV2 to this kind of resolutions, or is it...
GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
源代码:https://github.com/microsoft/Swin-Transformer 计算机视觉研究院专栏 作者:Edison_G MSRA时隔大半年放出了Swin Transformer 2.0版本,在1.0版本的基础上做了改动,使得模型规模更大并且能适配不同分辨率的图片和不同尺寸的窗口!这也证实了,Transformer将是视觉领域的研究趋势! 01 前言 Swin Transformer V2的目标...
Swin Transformer V2: Scaling Up Capacity and Resolution 作者:elfin 资料来源:Swin V2 论文地址: https://arxiv.org/abs/2111.09883 如V2名字所言,这里增大了模型的冗余和输入的分辨率! V1论文解析
继Swin Transformer之后,微软在去年11月份发布了Swin Transformer V2,目前模型的实现以及预训练模型已经开源。Swin Transformer V2的核心是将模型扩展到更大的容量和分辨率,其中最大的模型SwinV2-G参数量达到了30亿,在物体检测任务上图像分辨率达到1536x1536,基于SwinV2-G的模型也在4个任务上达到了SOTA:在图像分类数据...
原文地址:https://arxiv.org/abs/2103.14030 官网地址:https://github.com/microsoft/Swin-Transformer 2. 网络框架 2.1 swim VS vit 从图中可以得到,Swin相较于ViT的区别在于:Swim模型的特征图具有层次性,随着特征层加深,特征图的高和宽逐渐变小(4倍、8倍和16倍下采样); **注:**所谓下采样就是将图片缩小...
代码地址:GitHub - microsoft/Swin-Transformer: This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". 关于V2的一些评论:如何评价微软亚洲研究院的Swin Transformer V2:在4个数据集上达到SOTA? - 知乎 https://www.zhihu.com/question/500004483 Abstract...
Nvidia's FasterTransformer now supports Swin Transformer V2 inference, which have significant speed improvements on T4 and A100 GPUs.11/30/2022Models and codes of Feature Distillation are released. Please refer to Feature-Distillation for details, and the checkpoints (FD-EsViT-Swin-B, FD-DeiT-...
Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representativ...
GitHub 地址:https://github.com/SwinTransformer/Transformer-SSL 方法介绍 自监督学习方法 MoBY 由 MoCo v2 和 BYOL 这两个比较流行的自监督学习方法组成,MoBY 名字的由来是各取了 MoCo v2 和 BYOL 前两个字母。MoBY 继承了 MoCo v2 中的动量设计、键队列、对比损失,此外 MoBY 还继承了 BYOL 中非对称编码...