=-sinx 公式:∫sinxdx=-cosx+C 不定积分的意义: 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。 若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在...
(sinx)^2的积分为∫sin^2xdx=∫(1-cos2x)dx/2=(1/2)∫(1-cos2x)dx=(1/2)(x-sin2x/2)+C =(2x-sin2x)/4+C。 积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以...
sinx 的积分 = -cosx+c , 解题方法:由于导数和积分是互逆运算,可得cosx的导数是-sinx,所以-cosx的导数是sinx。
1. 一阶积分:∫ sin(x) dx = -cos(x) + C,其中C为常数。2. 二阶积分:∫ ∫ sin(x) dx dx = -∫ cos(x) dx = -sin(x) + C,其中C为常数。3. 三阶积分:∫ ∫ ∫ sin(x) dx dx dx = ∫ (-sin(x)) dx = cos(x) + C,其中C为常数。以此类推,对于n阶积分,...
sinx在区间负无穷到正无穷的定积分是0 具体步骤如下:∫(-∞→+∞)sinxdx定义为lim(a→-∞,b→+∞)∫(a→b)sinxdx。如果这么定义,那么∫(-∞→+∞)sinxdx=lim(a→-∞,b→+∞)(cosa-cosb),不存在。如果算主值积分,就定义为lim(r→+∞)∫(-r→r)sinxdx,结果显然是0。
方法如下,请作参考:若有帮助,请采纳。
∫sinxdx =-cosx+C (cosx)'=-sinx 公式∫sinxdx=-cosx+C -cosx的导数=sinx 因此∫sinxdx=-cosx+C 这是奇函数在对称区间的定积分,答案可以直接写0。一定要计算的话,原函数是-cosx+(1/2)x^2,再入上下限,结果也是0。
∫sinxdx =-cosx+C (cosx)'=-sinx 公式:∫sinxdx=-cosx+C 不定积分的意义:一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断...
常见的三角函数的不定积分:1、sinx的不定积分:sinx=(1-cos2x)/2∫sinx dx=∫(1-cos2x)/2 =1/2 - 1/2·∫cos2xdx=1/2 - 1/4·∫cos2xd(2x)=1/2 - 1/4·sin2x+C 2、∫sinx dx = -cos x + C;∫cosx dx = sinx + C;∫tanx dx = ln |secx| + C;∫cotx dx ...