【题目】函数 y=sinxcos2x 的最小正周期是 相关知识点: 试题来源: 解析 【解析】【解析】依题意,根据二倍角公式可得y=sinxcosxcos2x=1/2sin2xcos2x ,=1/4sin4x ∴ 函数y=sncsxcs2x的最小正周期 T=(2π)/4=π/(2)【答案】π/(2)
解析 sinx的周期为π,cos(2x)的周期为2π,y的周期为其最小公倍数2π 分析总结。 sinx的周期为cos2x的周期为2y的周期为其最小公倍数2结果一 题目 y=sinx-cos2x的周期怎么算 答案 sinx的周期为π,cos(2x)的周期为2π,y的周期为其最小公倍数2π相关推荐 1y=sinx-cos2x的周期怎么算 ...
分析:求三角函数的最小正周期,首先要把函数化成正弦型函数的标准形式,即化成y=Asin(ωx+φ)+B的形式,然后利用T= 2π |ω|求出周期. 解答: 解:∵y=sinxcosxcos2x= 1 2sin2xcos2x= 1 4sin4x∴最小正周期为T= 2π 4= π 2.故选:A. 点评:本题是求三角函数周期的基本题型,解答本题的关键是化...
sinx的周期是2pi cos2x的周期是pi
百度试题 结果1 题目5.函数 y=sinxcosxcos2x 的周期是π/(2) ,值域是[-1/4,1/4] 相关知识点: 试题来源: 解析 π/(2) [-1/4,1/4]
(1)y=cos2x; (2)y=sinx; (3)y=2sin( - ). 答案: 解析: 解:(1)把2x看成是一个新的变量u,那么cosu的最小正周期是2π,就是说,当u增加到u+2π且必须增加到u+2π时,函数cosu的值重复出现.而u+2π=2x+2π=2(x+π),所以当自变量x增加到x+π且必须增加到x+π时,函数值重复出现,因此y=co...
1 y=sinxsinx=(sinx)^2=(1-cos2x)/2=1/2-(1/2)cos2x,周期是π 2 y=sin2xsinx=(-1/2)(cos3x-cosx)=(1/2)cosx-(1/2)cos3x 前面的周期2π,后面的周期2π/3,所以周期是2π 3 y=cos2xsinx=(1/2)(sin3x-sinx),前面的周期2π/3,后面的周期2π,所以周期是2π ...
cos2x的最小正周期是π;sinx的最小正周期是2π;π和2π的最小公倍数是2π;因此cos2xsinx的最小正周期是2π;事实上,cos[2(x+2π)]sin(x+2π)=cos(2x+4π)sin(x+2π)=cos2xsinx;
采用积化和差公式即可,变成加法运算,2个周期信号的加法求周期,求其最小公倍数即可。比如sin2xsinx积化和差后,一个cos3x(周期2pi/3),一个cosx(周期2pi),那么周期就是2pi。后式同理可解。