解:原式=sinxcosx =1/2sin2x =1/4∫xsin2xdx =1/4∫xsin2xd2x =-1/4∫xdcos2x =-xcos2x/4+1/4∫cos2xdx = -xcos2x/4+sin2x/8+C
(cosx)^4+(sinx)^4 =(cos² x+sin² x)-2cos² xsin² x =1-1/2sin² 2x =cos² 2x+sin² 2x-1/2sin² 2x =cos² 2x+1/2sin² 2x ∫1/((cosx)^4+(sinx)^4)=∫1/(cos² 2x+1/2sin² 2x)dx =∫...
sinxcosx的积分:(1/2)(sinx)^2+C。一、正弦 正弦(sine),数学术语,是三角函数的一种,在直角三角形中,任意一锐角∠A的对边与斜边的比,叫作∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。古代说法,正弦是股与弦的比例。三角函数是数学中属于初等函数中的超越函...
偶数次 将一个sinx放到dx后,剩余部分化为cosx / sinx化为cosx,变为下面情况 sinx化为cosx \ cosx化为sinx变为右侧\下面情况 直接套用倍角公式,逐步积分 0次 将一个sinx放到dx后,剩余部分化为coxx 直接套用倍角公式,逐步积分 \ 技巧:当sinx或cosx放到dx后均可积分时,一般情况下,建议用 dsinx ,减少因正负号...
使用凑微分的方法即可,d(sinx)=cosx dx 所以得到 ∫ cosx *sinx dx =∫ sinx d(sinx)= 0.5 sin²x +C,C为常数
1 具体回答如图:一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。扩展资料:被积函数中含有三角函数的积分公式有:对于定积分,设f(x...
∫sinxdcosx =∫-(sinx)^2dx =∫[(cos2x-1)/2]dx =1/4*∫(cos2x-1)d(2x)往后不再说了,你应该会了
一、sinx类型的积分 下面是几个常见的sinx类型的积分公式。 1. sinx的积分 ∫sin(x)dx=-cos(x)+C 其中,C为常数。 2. sin^n(x)的积分 对于正整数n来说,sin^n(x)的积分公式如下: ∫sin^n(x)dx=(-1)^(n-1)*(sin^(n-1)(x)*cos(x)-(n-1)*∫sin^(n-2)(x)dx) 二、cosx类型的积分...
sinxcosx不定积分为是(1/2)(sinx)^2 +C。解:原式=sinxcosx。=1/2sin2x。=1/4∫xsin2xdx。=1/4∫xsin2xd2x。=-1/4∫xdcos2x。=-xcos2x/4+1/4∫cos2xdx。=-xcos2x/4+sin2x/8+C。不定积分 不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、...
dx的不定积分为ln|tanx|+C。解:∫1/(sinx*cosx)dx =∫(sin²x+cos²x)/(sinx*cosx)dx =∫(sinx/cosx+cosx/sinx)dx =∫(sinx/cosx)dx+∫(cosx/sinx)dx =-∫(1/cosx)dcosx+∫(1/sinx)dsinx =-ln|cosx|+ln|sinx|+C =ln|sinx/cosx|+C =ln|tanx|+C ...