前言:记录自己阅读《Professional CUDA C Programming》这本书学习CUDA编程的一些知识,同时供大家参考。 主要参考文献: ①谭升大佬的博客应该查询过CUDA编程的同学都应该有所了解,该博客将《Professional CUDA…
https://gitee.com/wangzhenbang2023/cuda-learning/blob/master/pccp/Professional%20CUDA%20C%20Programming.pdfgitee.com/wangzhenbang2023/cuda-learning/blob/master/pccp/Professional%20CUDA%20C%20Programming.pdfgitee.com/wangzhenbang2023/cuda-learning/blob/master/pccp/Professional%20CUDA%20C%20P...
CUDA 编程:基础与实践9.0 Modern CMake for C++: Discover a ... A Primer on Memory Consistency a... Getting Started with LLVM Core Lib...7.6 GPU高性能编程CUDA实战7.9 Programming Massively Parallel Pr...9.3 C++17 - The Complete Guide9.4 ...
2 enum __device_builtin__ cudaLimit 3 { 4 cudaLimitStackSize = 0x00, // 栈尺寸 5 cudaLimitPrintfFifoSize = 0x01, // printf/fprintf 缓冲区尺寸 6 cudaLimitMallocHeapSize = 0x02, // 堆内存尺寸 7 cudaLimitDevRuntimeSyncDepth = 0x03, // ?运行时同步深度 8 cudaLimitDevRuntimePendingL...
CUDA Libraries简单介绍 上图是CUDA 库的位置。本文简要介绍cuSPARSE、cuBLAS、cuFFT和cuRAND。之后会介绍OpenACC。 cuSPARSE线性代数库,主要针对稀疏矩阵之类的。 cuBLAS是CUDA标准的线代库,只是没有专门针对稀疏矩阵的操作。 cuFFT傅里叶变换 cuRAND随机数 CUDA库和CPU编程所用到的库没有什么区别,都是一系列接口的集合...
当当上海外文书店旗舰店在线销售正版《预订 Professional CUDA C Programming》。最新《预订 Professional CUDA C Programming》简介、书评、试读、价格、图片等相关信息,尽在DangDang.com,网购《预订 Professional CUDA C Programming》,就上当当上海外文书店旗舰店。
- **CUDA程序流程**:说明了典型CUDA程序的实现步骤,强调了kernel启动后控制返回给host的异步特性。二、内存管理 - **内存管理函数**:介绍了CUDA中用于在GPU上申请和管理内存的函数,如`cudaMalloc`和`cudaMemcpy`。- **内存层次结构**:详细解释了CUDA编程模型中的内存层次,包括全局内存(global ...
The CUDA execution model exposes an abstract view of the GPU parallel architecture, allowing you to reason about thread concurrency. In Chapter 2, you learned ... Get Professional CUDA C Programming now with the O’Reilly learning platform. O’Reilly members experience books, live events, ...
Professional CUDA C Programming Included here are the code files for any samples used in the chapters as illustrative examples. Each chapter has its own code folder that includes the sample .c and .cu files for that chapter. The per-chapter folders each also include a Makefile that can be ...
A typical CUDA program structure consists of fi ve main steps: 1. Allocate GPU memories. 2. Copy data from CPU memory to GPU memory. 3. Invoke the CUDA kernel to perform program-specifi c computation. 4. Copy data back from GPU memory to CPU memory. ...