第一条就是这种方法的核心,称为牛顿迭代公式(Newton's Raphson iterative formula)。与其他方法相比,其逼近速度会更快,尤其是在近似的精度较高时尤为明显。 例题(Example) Find the root of the functionobtained after the first iteration on application ofNewton-Raphson schemeusing an initial guess of. Given ...
在数值分析中,Newton-Raphson 方法是一种用于求解方程的根的高效迭代算法,同时这个方法也是 A-Level Further Mathematics 与数值计算相关的版块中要求掌握的。 Newton-Raphson 方法属于微积分中比较基础的内容,长久以来我也只是把它当作一把好刀,需要的时候拿出来用用而已。近几年瞎折腾的活里,比如帮某人画弱碱滴强酸...
因此求解非线性方程组,研究求解算法是一个难点,求解算法主要为增量法和迭代法,实际上真正有限元求解时是两种方法结合使用的。 1.算法来源 Newton-Raphson(牛顿-拉夫森)迭代法是一种求解方程根的常用方法。它使用函数的一阶和二阶导数信息来高效地逐步逼近方程根。 略去高阶项,整理可得到下式 需要注意的是,牛顿-...
牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式: 1设 ,对 在点 作泰勒展开: 略去二次项,得到 的线性近似式: 。 由此得到方程 0的近似根(假定 0), 即可构造出迭代格式(假定 0): 公式(3.4.1) 这就是牛顿迭代公式,若得到的序列{ }收敛于 ,则 就是非线性方程的根。 2 牛顿迭代法...
newton-raphson 方法Newton-Raphson方法是一种初等函数的数值求根方法,它通过迭代公式x_{n+1} = x_n - f(x_n)/f'(x_n)逼近方程f(x) = 0的根,其中f(x)是已知函数,f'(x)是f(x)的导数。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛...
牛顿迭代法(Newton's method)又称牛顿-拉夫逊方法(Newton-Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设r是f(x)=0的根,选取x0作为r初始近似值,过点(x0,f(x0))作曲线y=f(x)的切线1,1与x轴的交点的横坐标x1=x0-(f(x_0))/(f'(x_0))(f'(x...
牛顿迭代法(Newton´smethod)又称牛顿-拉夫逊方法(Newton-Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设是的根,选取作为初始近似值,过点作曲线的切线,与轴的交点的横坐标,称是的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称是的二次近似值.重复以上过程,得到的近似...
牛顿法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。 牛顿方程 起源 牛顿法最初由艾萨克·牛顿于1736年在 《流数法与无穷级数》 中公开提出。而事实上方法此时已经由...