牛顿迭代法(Newton's method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数的泰勒级数的前面几项来寻找方程的根。 基本信息 中文名 牛顿迭代法 外文名 Newton's method 别称 牛顿-拉弗森方法 ...
因此求解非线性方程组,研究求解算法是一个难点,求解算法主要为增量法和迭代法,实际上真正有限元求解时是两种方法结合使用的。 1.算法来源 Newton-Raphson(牛顿-拉夫森)迭代法是一种求解方程根的常用方法。它使用函数的一阶和二阶导数信息来高效地逐步逼近方程根。 略去高阶项,整理可得到下式 需要注意的是,牛顿-...
第一条就是这种方法的核心,称为牛顿迭代公式(Newton's Raphson iterative formula)。与其他方法相比,其逼近速度会更快,尤其是在近似的精度较高时尤为明显。 例题(Example) Find the root of the functionobtained after the first iteration on application ofNewton-Raphson schemeusing an initial guess of. Given ...
Newton-Raphson Method称牛顿-拉夫逊方法,又称牛顿迭代法。 牛顿-拉夫逊方法是一种近似求解方程的根的方法。 该方法使用函数f(x)的泰勒级数的前2项求解f(x)=0的根。 将f(x)函数在点x0的某邻域内展开成n阶泰勒公式如下: 其中Rn(x)为n阶泰勒余项。
牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式: 1设 ,对 在点 作泰勒展开: 略去二次项,得到 的线性近似式: 。 由此得到方程 0的近似根(假定 0), 即可构造出迭代格式(假定 0): 公式(3.4.1) 这就是牛顿迭代公式,若得到的序列{ }收敛于 ,则 就是非线性方程的根。 2 牛顿迭代法...
1牛顿迭代法(Newton’s method)又称牛顿–拉夫逊方法(Newton–Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设x^2是的根,选取作为x^2初始近似值,过点(x_0f(x_1))作曲线y=f(x)的切线I_yI_Δ与x^2轴的交点的横坐标x_1=x_2=(f(x_1))/(f(x_0))(f(x_1)=0,称X_1是...
牛顿迭代法(Newton´smethod)又称牛顿-拉夫逊方法(Newton-Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设是的根,选取作为初始近似值,过点作曲线的切线,与轴的交点的横坐标,称是的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称是的二次近似值.重复以上过程,得到的近似...
牛顿迭代法(Newton‘s Method)牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。考虑无约束最优化问题: 其中\theta^{\...
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛...