所以,当n=1时,他所构成的行列式就等于矩阵里的那个元素.当n>1时,他所构成的行列式一定为0.结果一 题目 n阶矩阵的秩为1,那么他所构成的行列式为0 答案 方阵的行列式不为0的充要条件是它的秩等于矩阵的阶数.所以,当n=1时,他所构成的行列式就等于矩阵里的那个元素.当n>1时,他所构成的行列式一定为0....
n阶矩阵元素全为1,由它的秩为1,为什么可知它的特征值为n,0,...,0?相关知识点: 试题来源: 解析 方阵的秩=方阵非零特征值的个数 所以可知该n阶矩阵的特征值只有一个非0 其n-1个为0有所有特征值的和=方阵的迹(即对角线元素之和)这里n阶矩阵元素全为1 所以迹=n=那个唯一不为0的特征值反馈...
首先,n个特征值的和是矩阵的迹. X1+X2+...+Xn=tr(A) 其次矩阵A的秩为1,说明A只有一个非零特征值,其他n-1个特征值都是0,那么很显然那个非零特征值就是A的迹tr(A)啦. 楼主如果要问“为什么n个特征值的和是矩阵的迹”或“为什么矩阵的秩为1,矩阵就只有一个非零特征值”?建议看书,都是很简单的...
设A为n阶矩阵则A的秩为1的充要条件是A=α乘以β的转置 α=(a1,a2,...an)的转置 β=(b1,b2,...bn)的转置 这里aibj不全为0
n阶矩阵秩为1,那么应该是0至少为n-1重特征值,因为n可能是为重特征值。在矩阵的秩为1的时候,对角线元素之和为0的矩阵,那么0就是它的n重特征值,“秩为r,0为n-r重特征”适用于对称矩阵,而问题中的n阶矩阵并没有说明是对称矩阵,所以需要视情况而定。
对于秩为1的n阶矩阵,零是其n重或n-1重特征值,如果是n-1重,则非零特征值是矩阵的主对角线元素之和;另外还看到,秩为1的矩阵可以分解为一个非零列向量与另一个非零列向量的转置的乘积,这两个向量的内积即是非零特征值;秩为1的矩阵对应的齐次线性方程组的基础解系含n-1个解向量。秩等于...
知识点: r(A)=1 的充要条件是存在n维非零列向量α,β, 使得 A=αβ^T.所以有 A^2 = (αβ^T)(αβ^T) = α(β^Tα)β^T = (β^Tα)αβ^T = tr(A) A. 结果一 题目 设n阶矩阵A的秩为1,证明A^2=tr(A)A 答案 知识点:r(A)=1 的充要条件是存在n维非零列向量α,β,使得 A...
任何一个秩一矩阵都可以写成一个列向量和一个行向量的乘积,你这个矩阵显然可以写成(3,1)转置乘以(1,3)。而将这个两个向量反过来相乘得到(1,3)乘以(3,1)的转置=6,从而这个矩阵的平方=6乘以这个矩阵,从而其n次方=6的(n-1)次方乘以这个矩阵。
你好!A的秩为1,也就是A的各行各列成比例,可由此如图证明结论。经济数学团队帮你解答,请及时采纳。谢谢!
首先,n个特征值的和是矩阵的迹.X1+X2+...+Xn=tr(A)其次矩阵A的秩为1,说明A只有一个非零特征值,其他n-1个特征值都是0,那么很显然那个非零特征值就是A的迹tr(A)啦.楼主如果要问“为什么n个特征值的和是矩阵的迹”或“为什么矩阵的秩为1,矩阵就只有一个非零特征值”?建议看书,都是很简单的结论. ...