因为他的行列式等于1≠0,所以它的秩为n 分析总结。 因为他的行列式等于10所以它的秩为n结果一 题目 证明n阶单位矩阵的秩为n 答案 因为他的行列式等于1≠0,所以它的秩为n 结果二 题目 【题目】证明n阶单位矩阵的秩为n 答案 【解析】因为他的行列式等于 1≠q0 ,所以它的秩为n相关推荐 1证明n阶单位矩阵的...
非零阵。所有的n阶矩阵的行列式都为0。而伴随矩阵的元素是n1阶子式,所以肯定是非零阵。
解析 D-|||-AA^*=|A|E=O -|||-⇒r_A+r_A≤n -|||-=n—-|||-而A必有某n—1阶子式-|||-不为0,故A必有某-|||-元不为0,则-|||-r_A0 -|||-故-|||-r_A=1 分析总结。 线性代数矩阵的秩设n阶方阵a的秩为n1则伴随阵a的秩...
B 正确答案:B 解析:用初等变换化A为阶梯形矩阵来求秩. (这里第一步变换是把第2~n列都加到第1列上;第二步变换是把第2~n行都减去第1行.)如果1+(n-1)a≠0并且1-a≠0,则r(A)=n.如果1-a=0,则r(A)=1.当1+(n-1)a=0时r(A)=n-1,即a=1/(1-n). 知识模块:向量组...
A. 1. B. 1/(1-n). C. -1. D. 1/(n-1). 相关知识点: 试题来源: 解析 B 正确答案:B 解析:用行列式做.由于r(A)=n-1,|A|=0.求出|A|=[1+(n-1)a](1-a)n-1,要使得|A|=0,a必须为1或1/(1-n),排除了(C),(D).又显然a=1时r(A)=1,排除了(A),选(...
阶梯式最后一行全为 0, 0 行 的代数余子式 不是 0, 故伴随矩阵不为 0 矩阵。
对于秩为1的n阶矩阵,零是其n重或n-1重特征值,如果是n-1重,则非零特征值是矩阵的主对角线元素之和;另外还看到,秩为1的矩阵可以分解为一个非零列向量与另一个非零列向量的转置的乘积,这两个向量的内积即是非零特征值;秩为1的矩阵对应的齐次线性方程组的基础解系含n-1个解向量。秩等于...
r(A)=n-1, 则 r(A*)=1.此时A*A=|A|E=0所以A 的非零列向量都是 A* 的属于特征值0的特征向量结果一 题目 n阶矩阵A的秩为n-1,求A的伴随矩阵的特征值与特征向量 答案 r(A)=n-1, 则 r(A*)=1.此时 A*A=|A|E=0所以 A 的非零列向量都是 A* 的属于特征值0的特征向量 结果二 题目 ...
证明:根据等式A·A=det(A)I=0可知的每个列ER-|||-n都是矩阵A的零向量,即A中-|||-0,j=1,2,…,m。由假设A的秩为n-1,故每个列可表为=C,j=1,2,…,m,其中中ER-|||-72满足A中=0且中≠0。于是A=(c1中,C2中,…,Cn中)=中·7,其中=(c1,…,Cn)。不难看出,向量分别是矩阵A关于特征值...
任何一个秩一矩阵都可以写成一个列向量和一个行向量的乘积,你这个矩阵显然可以写成(3,1)转置乘以(1,3)。而将这个两个向量反过来相乘得到(1,3)乘以(3,1)的转置=6,从而这个矩阵的平方=6乘以这个矩阵,从而其n次方=6的(n-1)次方乘以这个矩阵。