解I=∫_(-∞)^(+∞)e^(-x^2)dy∫_(-∞)^yxe^(-x^2)dx+∫_(-∞)^(+∞)e^(-x^2)dx∫_(-∞)^( =-1/2∫_(-∞)^(+∞)e^(-2x^2)dy-1/2∫_(-∞)^(+∞)e^(-2x^2)dx=-∫_(-∞)^(+∞)e^ , 令 x=t/2,d dx=1/2dt ,有 I=-1/2∫_(-∞)^(+...
【题目】已知二维随机变量(X,Y)的联合密度函数为f(x,y)=1,0x1,0;0,15.y2x,定义Z=min(X,Y).计算:(1)X、Y的期望E(X)、E(Y);(
简单计算一下即可,答案如图所示 区域D={(x,y)|0<=x<=1,0<=y<=1}分为2部分:D1={(x,y)|0<=x<=1,0<=y<=x²}D2={(x,y)|0<=x<=1,x²<=y<=1}∫∫[D] |y-x²| dxdy=∫∫【0<=x<=1,0<=y<=x²】(-y+x²)dxdy+∫∫【0<=x<...
P(Y≤z)=∫[0,z]∫[z,1]f(x,y)dxdy。将f(x,y)代入上述积分式中,我们可以计算出P(X≤z)和P(Y≤z)。当z>1时,P(max{X,Y}≤z)=1,因为Z的取值范围是非负数。综上所述,我们可以得到Z的CDF:F(z) = { 0, z < 0 P(X≤z)P(Y≤z), 0 ≤ z ≤ 1 1, z > 1 }...
求二重积分e^[(x-y)/(x+y)]dxdy,积分区域为x=0,y=0,x+y=1所围成的区域 设f(x,y)连续,且f(x,y)=x(y^2)+∫∫f(x,y)dxdy,其中D是由x=1,y=0,y=x^2所围,求f(x,y) f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0 特别推...
解(1)由随机变量二元函数的期望公式得E(X)=∫_-∞)_(-∞)^(+∞)∫_(-∞)^(+∞)x⋅f(x,y)dxdy=∫_0^1dx∫_0^(2x)x⋅1dy=∫_0^1 E(X)=一x·f(x,y)dxdy=x·1dy=E(Y)=∫_-∞^(+∞)∫_-∞^(+∞)([])[f(x,]'])[1/(2x)]^2[1/2]^2=∫_0^a(f(x))...
分析积分区域如图9-16,是整个 xOy平面.而 min| x,y}={x,x≤y, 于是 y,xy, 本题需要分区域计算. I=∫_(-∞)^(+∞)∫_(-∞)^(+∞)min(x,y|e^(-x^2)-y^2dxdy 解 I= y=x =∫_a^bye^(x-z)-f^2dxdy+∫xe^(-x^2-y^2dxdy) =∫_(-∞)^(+∞)dx∫_(-∞)^...
简单计算一下,答案如图所示
定理设( X,y) 的联合密度为p( x,y) ,则;乙一m ax( X,y) 的密度为户l ( z) =J p(x,z)drd(J.J-如,y)dxdy)夕-(z)一E(z)一二竺生乏—一,(J.如,y)dr)dy+,(==l i mJ A£-· O=li。Xz-m -.0[兰—1F一+羔—_F一+坐塑等笋巡]一l i m [-I p(x,z+0l Az)dx)+l ...
稍后