百度试题 结果1 题目当X趋于0时,ln(1+x)等价于() A.1+x B.1-1/2x C.x D.1+lnx A. 1+x B. 1-x C. x D. 1+lnx 相关知识点: 试题来源: 解析 C 用洛必达定理可得 反馈 收藏
当x接近0时,ln(1+x)与x等价,即它们的比值在极限情况下等于1。这个等价关系在数学分析中常用于处理无穷小量的问题。以下是几个常见的等价无穷小量的例子:1. 当x趋近于0时,e^x - 1 约等于 x。2. e^(x^2) - 1 在x趋近于0时,等价于 x^2。3. 1 - cosx 当x趋近于0时,近似为 ...
ln(1+x)等价于x不能用的情况如下。对数函数lnx是以e为底数的函数,当x等于1时,对数函数lnx的值等于0,所以当lnx等于0时,lnx当x=1时它的值为0,再加上实数x,它依然等于这个实数,即等价。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素...
等价无穷小替换。当x足够小时,ln(1+x)等价于x,即 ln(1+x)~x。极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来...
ln(1+x)=x-x2/2+x^3/3-x^4/4+...代入x2 ln(1+x2)=x2-x^4/2+x^6/3-...因此ln(1+x2)的等价无穷小应该是x2。设有两个命题p和q,如果由p作为条件能使得结论q成立,则称p是q的充分条件;若由q能使p成立则称p是q的必要条件;如果p与q能互推(即无论是由q推出p还是p...
因为lim(x-->0)[ln(1+x)]/x=lim(x-->0)1/(1+x) 【罗比达法则】=1。所以x-->0时,ln(1+x)与为等价x无穷小量。设有两个命题p和q,如果由p作为条件能使得结论q成立,则称p是q的充分条件;若由q能使p成立则称p是q的必要条件;如果p与q能互推(即无论是由q推出p还是p推出q都...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向...
一阶导是2x/(1+x²),把0一代,是0,二阶导是[2(1+x²)-4x²]/(1+x²)²=2(1-x²)/(1+x²)²,把x=0代入得2.所以,它的二阶展开式应该是x²+o(x²).根据等价无穷小,ln(1+x²)确实是等价于x²的。
x趋于0,ln(1+x)与x是等价无穷小 这是因为:令 g(x) = ln(1+x),g(0) = 0;[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;[ln(1+x)] ''' = 2 /...
ln(1+x)等价于x。当f(x)/g(x)=1(x趋向于x0)时称f(x)与g(x)等价无穷小,因为x趋向于0时ln(1+x)/x=1,因此这两个就是一对常用的等价无穷小量。证明过程简单说一下:将1/x放到ln里面,此时ln里面是(1+x)^(1/x),当x趋于0时这个极限为e(两个重要极限之一),因此整体上...