x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,但是作为加减的元...
在你提到的例子中,你似乎在试图使用等价无穷小的概念来进行运算。然而,你的推导有一些问题。首先,ln(1+x)的极限并不是x,而是0。其次,即使你把两个无穷小量写成极限的形式相加,它们也不一定是等价无穷小。因此,我们不能简单地得出结论说,两个无穷小量的和为0。在数学中,我们需要更加精确地...
当 x→0 时,x/ln(1+x)的极限的防范:当x->0时,lim(x→0)ln(x+1)->x,所以就很容易得出答案是1,也就是用到了等价无穷小的概念。注意事项:0/0未定式求极限可用洛必达法则:当x→0时,lim ln(x+1)/x = lim 1/(x+1) = 1。lim(x→0)ln(x+1)除以x。=lim(x→0...
1. 当x趋近于0时,ln(1+x)与x的关系可以近似为ln(1+x)~x。2. 通过求极限lim(x->0) ln(1+x)/x,我们可以得到这个关系。3. 我们可以将ln(1+x)/x写成ln[(1+x)^(1/x)]的形式,以便应用极限运算。4. 根据一个重要的极限定理,lim(x->0) (1+x)^(1/x)等于自然对数的底e。5...
3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过程中,两个无穷小之比的极限为1,那么这两个无穷小是等价的。5. 由于lim(x→0)ln(1+x)/x的结果是1,我们可以得出结论,ln(1+x)和x是等价无穷小。6. 此外,等价无穷小还表明...
lnx,x趋于无穷时lnx的极限不存在,可以表示为:lim(x→+∞)lnx=+∞。解答过程如下:(1)y=lnx是一个增函数,图形如下:(2)数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“...
x-ln(1+x)等价于1/2x^2。 lim(x-ln(1+x))/x² =lim(1-1/(1+x))/2x =lim1/2(1+x) =1/2 ∴x-ln(1+x)~x²/2 等价无穷小: 1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0) 3、1-cosx~1/2x^2 (x→0) 4、1-cos(x^2)~1/2x^4 (x→0) 5、sinx~x (...
两边对x求导得:f'(x)=1-x+x^2-x^3+ …注意到当-1<x<1时,有f'(x)+x*f'(x)=1,所以有 f'(x)=1/(1+x),(-1<x<1),且f(0)=0 解上述微分方程得:f(x)=ln(1+x),(-1<x<1)易证f(1)所表示的无穷级数是收敛的,考虑到f(x)的连续性,有 f(1)=lim(x趋于1)(ln...
=lim [ln1/x ln(1+x)]x→0 =1X[ln1Xlnx]=1X10^x =1X1 =1 求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比...
当x趋于1的时候 1-x当然趋于0 即ln|1-x|趋于ln0+ 而ln0+则趋于负无穷 所以此时 ln|1-x| 就是趋于负无穷的