当x接近0时,e^x可以视为1,因为其极限值为1。这表明在x趋近于0的条件下,e^x与1是等价无穷小。等价无穷小的概念在微积分学中非常重要,特别是在计算极限时。这种等价关系简化了复杂的极限问题,使之更易于求解。泰勒公式是一种将函数在某点附近的近似表达为多项式的方法,它利用函数在该点的导数...
解答 如图:lim[x→0] x/(e^x - 1):令e^x - 1 = u,则x→0时,u→0,x=ln(u+1)=lim[u→0] ln(u+1)/u=lim[u→0] (1/u)ln(u+1)=lim[u→0] ln(u+1)^(1/u)=lne=1。因此当x→0时,e^x - 1与x是等价无穷小。等价无穷小在乘除法中可互相替换。介绍y等于e的x次方是一种指...
等价无穷小代换公式有:arcsinx ~ x;tanx ~ x;e^x-1 ~ x;ln(x+1) ~ x;arctanx ~ x;1-cosx ~ (x^2)/2。当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a得x次方~xlna;(1+x)的...
分析总结。 等价无穷小代换中e的x次方等价于x还是e的x次方再减一等价于x结果一 题目 等价无穷小代换中,e的x次方等价于x还是e的x次方再减一等价于x? 答案 应该是e^x-1=x相关推荐 1等价无穷小代换中,e的x次方等价于x还是e的x次方再减一等价于x?反馈...
e^x是一阶,泰勒展开后的等价无穷小也保留x的一阶,既e^x=1+x。加减中是可以用泰勒展开来计算的...
e的x次方-1的等价无穷小对。lim (e^x-1)/x (0/0型,适用罗必达)x->0=lim e^x/1x->0=1所以为等价无穷小如果不用罗必达,也可令e^x-1=t 则e^x=t+1 x=ln(t+1)x->0 t->0lim t/ln(t+1)t->0=lim1/ln(t+1)^1/tt->0=1扩展资料在运用洛必达法则之前,首先要完成两...
纠其本质还是泰勒展开式,如果分子的用等价无穷小的阶数与分母的阶数相同或者大的话应该可以,但分母阶数...
等于lim e^x/1=1;所以为等价无穷小 。泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:...
结果一 题目 证明:当x趋近0时,(e的x次方)-1和x是等价无穷小量.高数的无穷小的比较 答案 两者作商,洛必达法则,.lim (e^x-1)/x=lim e^x/1=1证毕相关推荐 1证明:当x趋近0时,(e的x次方)-1和x是等价无穷小量.高数的无穷小的比较 反馈 收藏 ...
limx→0ex=e0=1;limx→0x+1=0+1=1和x→0,ex和1+x均不是无穷小量, 都是1 ...