Crank-Nicolson差分格式广泛应用于各种偏微分方程的数值求解中,特别是热传导方程和扩散方程。它具有以下优点: - 稳定性好:Crank-Nicolson差分格式是一个隐式方法,对于稳定性要求较高的问题特别有效。 - 精度高:与显式方法相比,Crank-Nicolson差分格式具有二阶精度,可以获得更准确的数值解。 - 收敛速度快:由于其隐式...
求解一维热传导方程Crank-Nicolson差分法
数学- 微分方程数值解 - 第 4 章 抛物型方程的差分解法 - 4.5 Crank-Nicolson 格式 4.5 Crank-Nicolson 格式 本节对于定解问题 (3.1.1)∼(3.1.3)(3.1.1)∼(3.1.3) 建立一个具有 O(τ2+h2)O(τ2+h2) 精度的无条件稳定的差分格式。 注意,对各个符号取上标 k+12k+12 和取下标 k+12k+12 的...
科技导报 201 29 9 双曲型方程的 Crank-Nicolson 块中心差分方法任宗修 张秀春 银召利摘要的 Crank-Nicolson 格式为基础。 在非等距剖分的网格上得到了近似解和解的一阶导数。 其特点是近似解按离散的 L2模达到最优用 Crank-Nicolson 块中心差分法研究了有界区域上的线性双曲型微分方程的数值解 此方法以块中心...
(单选)对线性平流方程 ,Crank-Nicolson的差分格式为: 。该格式增幅因子G的表达式为( ),属于( )格式。时间和空间截断误差分别是( )。A.B.C
Crank Nico[soa类 型的 特征 差分格式 ,给 出了该格 式形成 的线性代 数方程组 可解 的一 个克分条件 t证 明 了该 格式按 离散 ∥模是收敛的 ,且其收敛 阶为 ()(血 + ^ )- 关键 词 :一维 对流 扩散 方程 ;线性 ;非线性 ;特征 差分格式 ;二 阶精度 ;收敛 性 中图分 类号 :O241 82.....
百度试题 题目试建立一维抛物型方程的Crank-Nicolson差分格式?相关知识点: 试题来源: 解析 答:在点,取关于的一阶中心差商和关于的二阶差商,得: 令:,则:反馈 收藏
目录 摘要1 1.前言3 2.Crank-Nicolson差分法4 2.1)差分法定义4 2.2)差分格式的建立4 2.3)Crank-Nicolson差分格式(六点格式)7 2.4)Crank-Nicolson差分格式的向量表示9 2.5)Crank-Nicolson差分格式的稳定性11 2.6)Crank-Nicolson差分格式的收敛性14 3.数值算例17 3.1)利用Crank-Nicolson方法求解数值算例17 4.总结...
cranknicolson差分求解一维热传导方程关于时间和空间均是二阶收敛 Crank_Nicolson差分格式解热传导方程for程序 ! Crank_Nicolson差分求解一维热传导方程 ,关于时间和空间均是二阶收敛 program heat_transfer implicit real*8(a-h,o-z) dimension U1(199,1),A(199,199),A1(199,199) dimension F(1:2),T(1:2...
用Crank-Nicolson差分格式计算抛物型方程—=—520:::x:::1 t2 :t:x 满足初始条件u|t£=si n二x0_x_1和边界条件u lx」=u 1x4 = 0t■0在 t=0.1,0.2处的解,.:t=k=0.1,.:x=h=0.1。 2、程序 #i nclude<iostream.h> #in clude<math.h> const double pi=3.1415926; const int N=11; co...