rownames(DEG_DESeq2_2) <- DEG_DESeq2_2$SYMBOL#[1] 19249 9 这时准备基因排序向量时需要小心去除转换失败的基因。 DEG_DESeq2_2 <- na.omit(DEG_DESeq2_2[,c("log2FoldChange","ENTREZID")]) DEG_DESeq2_2 <- DEG_DESeq2_2[order(DEG_DESeq2_2$ENTREZID),] DEG_DESeq2_2 <- DEG...
PART 01Bulk RNA-Seq与单细胞/空间转录组 普通转录组测序(Bulk RNA-Seq)是提取组织、器官、群细胞的Total RNA进行测序,得到的是一群细胞中单个基因的平均表达水平,用来比较不同个体或同一个体的不同组织间的表达差异,但对内部细胞异质性较强的系统,如肿瘤组织,很多异常细胞的基因表达的信息会丢失,但是成本较低,技...
本文为scRNA数据为主导的与bulk RNA关联应用的案例,和只用scRNA-seq数据分析相比,bulk RNA-seq验证了基因的表达和功能,既避免使用复杂的实验,也证明了结果的可靠性。研究用的是已发表的仅8例scRNA数据,如果是自己测的结果,分数应该还会有提升。 为方便大家研究,基迪奥已早早准备好了专门的细胞通讯流程报告,还有scRNA...
scRNA-seq和BulkRNA-seq是转录组学的两个重要分支,所以它们的联合分析是以验证性为主。将二者联合分析作为验证,基于表达模式相关性,利用 Bulk RNA-Seq 数据进行评估,明确单细胞测序分析结果的准确性,或者两种测序结果也可以相互印证。接下来一起看看Bulk RNA-seq& scRNA-seq有哪些?在文章中是如何应用的?No.1...
对illumina数据进行处理,利用 RNA-Seq 发现新的 RNA 变体和剪接位点,或量化 mRNA 以进行基因表达分析等。对两组或多组样本的转录组数据,通过差异表达分析和对所发现的差异表达基因集合进行功能富集分析以推断生物学功能。 数据准备: 数据下载: Humangenome(GRCh38/hg3):Index of /goldenPath/hg38/chromosomes (ucs...
之前我们探讨了Bulk RNA-seq的价值和学习成本(第1期. 快2024年了,还有必要学习Bulk RNA-seq?),并一起零基础完成了主成分分析(PCA)图(第2期. 零基础画PCA图)。今天我们穿插一个在转录组测序中常用的知识点与技能:不同基因ID的转换。本文将从3个方面分享:有哪些常见的基因ID类型、为什么要进行基因ID转换、如...
Bulk RNA-seq技术原理: 1. 提取RNA:从样品中提取总RNA,包括mRNA、rRNA、tRNA等。 2. RNA库构建:将提取的RNA进行反转录,并通过PCR扩增,构建成RNA-seq文库。 3.测序:将文库通过高通量测序技术测序,得到大量的RNA序列数据。 4. 数据分析:对RNA序列数据进行质量控制、比对到基因组和转录组、基因表达量计算和差异...
Bulk2Space是一种基于深度学习框架的空间去卷积算法,该算法使用现有的高质量scRNA-seq数据和空间转录组学作为参考,从bulk RNA-seq中生成空间解析的单细胞表达谱。 Bulk2Space工作流程 Bulk2Space分为去卷积和空间映射两个步骤:首先在聚类空间内生成单细胞转录组数据,以找到一组细胞,其聚合数据与批量数据最接近。接下...
四、以DESeq2为例演示全过程 篇幅有限,本文仅演示基于DESeq2的差异分析全过程(基于counts进行分析,不能用tpm、fpkm等归一化后的数据,想获得练习数据,可在公众号输入:Bulk RNA-seq练习数据2)。 1.安装并加载R包(若有,则不用重新安装) install.packages('R.utils') ...
作者通过开发了一个反卷积方法ProM将scRNA-seq和bulk RNA-seq数据进行整合。并通过多种方法验证其性能。作者通过上述方法发现UC患者上皮细胞和成纤维细胞亚群的异质性。并系统地识别并验证了与治疗反应和耐药性相关的细胞亚群。除此之外,作者还揭示了TME中的协调免疫网络,并说明了这些细胞类型主要富集于低氧通路以及对...