2-4xy+y2-2y+x2+8x+3=(4x2-4xy+y2)-2y+x2+8x+3=(2x-y)2-2y+x2+4x+4x+3=(2x-y)2+4x-2y+x2+4x+3=(2x-y)2+2(2x-y)+1-1+x2+4x+4-4+3=[(2x-y)2+2(2x-y)+1]+(x2+4x+4)-2=(2x-y+1)2+(x+2)2-2,∵x,y均为实数,∴(2x-y+1)2≥0,(x+2)2≥0,∴原...
解析 2W =5x2-4xv+y2-2y+8x+3=4.x2-4xy+y2+4x-2y+1+x2+4x+4-2=(2 x-y) 2(2r-y)+1+(x+2)-2=(2x-y+1)2+(x+2)-2 因为 r,y为实数,所以(2r-y+1)2≥0.(r+2)2≥0.则 W -2.所以 W的最小值为 -2.故答案为 -2 ...
W = 5x^2-4xy+y^2-2y+8x+3W'x = 10x - 4y + 8, W'y = -4x + 2y - 2, 解得唯一驻点 (-2,-3)A = W''xx = 10 > 0, B = W'xy = -4, C = W'yy = 2, B^2-AC = -4极小值即最小项是 W(-2, -3) = 29 - 24 + 9 + 6 - 16 + 3...
(3)原式=4a2-2a-6-4a2+4a+10=2a+4; (4)原式=2x-3x+ x 2 - 1 2 +5x- 3 2 x+3=3x+ 5 2 ; (5)原式=12x2-9x+6-2+8x2-2x=20x2-11x+4; (6)A-2B=3x2-2xy+y2-2(5x2-4xy-2y2)=x2-2xy+y2-10x2+8xy+4y2=-7x2+6xy+5y2. ...
(2)原式=-4xy+xy-6x=-3xy-6x; (3)原式=4a2-2a-6-4a2+4a+10=2a+4; (4)原式=2x-3x+ - +5x- x+3= ; (5)原式=12x2-9x+6-2+8x2-2x=20x2-11x+4; (6)A-2B=3x2-2xy+y2-2(5x2-4xy-2y2)=x2-2xy+y2-10x2+8xy+4y2=-7x2+6xy+5y2. ...
答案见上-2 解析:本题考查了配方法的应用、非负数的性质. W=5x^2-4xy+y^2- 2y+8x+3=4x2-4xy+y2+4x-2y+1+x2+4x+4-2=(2x-y)2+2(2x-y)+1+ (x+2)^2-2=(2x-y+1)^2+(x+2)^2-2 ,∵x、y 为实数, (2x-y+1)^2≥0 , (x+2)^2≥0 ,..W的最小值为-2,故答...
答案见上17.-2[]W =5x2-4xy+y2-2y+8x+3 =4x^2-4xy+y^2+4x-2y+1⋅2 =(2x-y)2+2(2x-y)+1+(x+2)2-2=(2x- y+1)^2+(x+2)^2-2 . ∵x,y 为实数, ∴(2x-y+1)^2≥0,(x+2)^2≥0 , ∴W 的最小值为-2. 一题多解把原式整理成关于y的一元二次方程的 形式...
(1)5x(x-3y)2-2y(3y-x)2,=5x(x-3y)2-2y(x-3y)2,=(x-3y)2(5x-2y);(2)9-116x2=(3-14x)(3+14x);(3)8x-4x2-4,=-4(x2-2x+1),=-4(x-1)2;(4)x(x+y)2-4xy2,=x[(x+y)2-4y2],=x(x+y+2y)(x+y-2y),=x(x-y)...
即x+2=y-4=0 x=-2,y=4 z=-1 所以原式=5x^2y-4xy^2+3(2xyz-2x^y)+4xy^2-4xyz =5x^2y+6xyz-6x^y-4xyz =-5x^2y+2xyz =-5*4*4+2*(-2)*4*(-1)=-80+16 =-64
5x3y-3[-x2y+2(x3y- 3 2x2y)],其中x=2,y=-1.试题答案 在线课程 分析:(1)根据非负数的性质得到x+2=0,y- 1 2=0,解得x=-2,y= 1 2,再把原式去括号、合并得到5xy+y2,然后把x、y的值代入计算;(2)先把原式去括号、合并得到-3x+y2,然后把x、y的值代入计算;(3)先把原式去括号、合并...