当矩阵A,B,AB都是N阶对称矩阵时,A,B可交换,即AB=BA。 证明: A,B,AB都是对称矩阵,即AT=A,BT=B,(AB)T=AB 于是有AB=(AB)T=(BT)(AT)=BA 当A,B可交换时,满足(A+B)^2=A^2+B^2+2AB 。 证明: A,B可交换,即AB=BA (A+B)^2 =A^2+AB+BA+B^2 =A^2+AB+AB+B^2=A^2+B^2...
|AB|=|A||B| 用两次拉普拉斯公式即证,可以自己设二阶矩阵照我这种方法验证。对n采用数学归纳法证明。显然,因为1×1矩阵是对称的,该结论对n=1是成立的。假设这个结论对所有k×k矩阵也是成立的,对(k+1)×(k+1)矩阵A,将det(A)按照A的第一行展开。中-|||-a1a22-a12a2-|||-a1a22-a2a2-|||-为...
当矩阵a,b,ab都是n阶对称矩阵时,a,b可交换,即ab=ba证明:a,b,ab都是对称矩阵,即at=a,bt=b,(ab)t=ab于是有ab=(ab)t=(bt)(at)=ba当a,b可交换时,满足(a+b)²=a²+b²+2ab证明:a,b可交换,即ab=ba(a+b)²=a²+ab+ba+b²=a...
矩阵AB=BA可以推出B是A的逆矩阵。1、相似的定义为对n阶方阵A、B,若存在可逆矩阵P,使得P^-1AP=B,则称A、B相似,从定义出发,最简单的充要条件即是对于给定的A、B,能够找到这样的一个P,进一步地,如果A、B均可相似对角化,则他们相似的充要条件为A、B具有相同的特征值。2、逆矩阵是一个数学概念,...
当A,B,AB都为对称矩阵时,AB=BA 首先A、B互为逆矩阵时AB=BA=E 或者A、B其中一个等于E时,AE=EA=A,BE=EB=B 或者A、B其中一个等于零矩阵时,AB=BA=0(0表示零矩阵)或者A=B时,AB=BA=AA=BB
证明: 因为A,B正定, 所以=A,=B (必要性) 因为AB正定, 所以=AB 所以BA===AB. (充分性) 因为 AB=BA所以==BA=AB所以AB 是对称矩阵.由A,B正定, 存在可逆矩阵P,Q使 A=P,B=Q. 故AB =PQ而QAB=QP=(PQ) 正定, 且与AB相似故AB 正定.结果...
1、矩阵的转置假设有这么一个矩阵,那么它的转置,就是把他的行和列颠倒, 那么,我们可以从中得出几个结论, 这里面唯一要求解释,就是第三个,两个矩阵A和B相乘,它的转置,等于B转置与A转置相乘。 以这个题目为…
②对于都是n阶的矩阵A、B,AB与BA有相同的行列式 考虑了领零征值 单独考虑若λ=0,此时存在非零向量x使得ABx=λx=0,所以AB不满秩,知det(AB)=0。从而因det(BA)=det(AB)=0(前一个等号只在都为n阶才成立),BA不满秩,所以存在非零向量x使得BAx=0=λx。这说明λ=0也是BA的特征值。
行列式代表的是数字,数字相乘不分前後,矩阵是一个数表所有有顺序之分,所以这题是相等的。证:|AB|=|BA| 根据定义可得|AB|=|A| |B|(这是方阵行列式最基础的定义,基本不用求,要求自己用两个二阶矩阵来求)根据行列式定义,两个行列相乘位置互换是相等的(因为行列式可以等于一个值)所以,|...
还是矩阵,只不过用分块矩阵的形式表示出来,这个矩阵,左侧是A,右侧是B,行数跟A、B相同,列数是二者列数之和 结果一 题目 矩阵A,矩阵B .写成(A,B)是表示什么? 答案 还是矩阵,只不过用分块矩阵的形式表示出来,这个矩阵,左侧是A,右侧是B,行数跟A、B相同,列数是二者列数之和 结果二 题目 矩阵A,矩阵B...