当我们考虑当x趋近于0时,根号下1-cosx的等价无穷小表达式,可以引用泰勒级数来推导。根据泰勒公式,cosx可以近似为1减去x的平方除以2,再加上更高阶的无穷小项,即cosx~1-x^2/2+o(x^2)。这样,我们可以将1-cosx简化为x^2/2+o(x^2)。接下来,对根号内的表达式开方,我们得到√(1-cosx)~...
=根号2*sinx/2 等价于根号2*tanx/2 等价于根号2*x/2
记住在x 趋于0的时候,1-cosx等价于 0.5x^2,所以在这里,1-cos根号x 就等价于0.5(根号x)^2即其等价无穷小为 0.5x 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 其他类似问题2016-11-07 1-cos根号下x的等价无穷小 4 2016-10-27 1-cos(x^3)的等价无穷小是什么,并解释 2016-10-24 lim(...
等价x²/4 方法如下,请作参考:
首先搞清楚什么是无穷小,是在某一变化过程中一个变量极限为零;则同一变化过程中,两个无穷小的比为1则是等价无穷小,所以替换实际上就是乘以一个“1”,也就是你需要的两个无穷小的比·希望你能搞懂原理,自己再看看书应该就懂了
那么limx→02−2cosx2⋅x22=limx→02−2cosx2⋅x22=limx→0(1−cosx)x22=1 则说明当x...
1/2*x 例如:记住在x 趋于0的时候 1-cosx等价于0.5x^2 所以在这里 1-cos根号x 就等价于0.5(根号x)^2 即其等价无穷小为0.5x
sinax~ax,√(1-cosx)=√2sinx/2~√2x/2,——》原式=limx→0+ =ax/(√2x/2)=√2*a.
方法如下,请作参考:
在x趋于0的时候 cosx趋于1,1+√cosx即趋于2 并不是无穷小 而如果指的是 1-√cosx 那么1-√cosx=(1-cosx)/(1+√cosx)x趋于0的时候,1-cosx等价于x²/2,而1+√cosx趋于2 代入可以得到1-√cosx 等价于x²/4