根号下x^2-1的积分是(1/2)[x√(x²-1)+ln|x+√(x²-1)|]。解:可用分部积分求出。设I=∫√(x²-1)dx,则:I=x√(x²-1)-∫xd√(x²-1)=x√(x²-1)-∫x[x/√(x²-1)]dx =x√(x²-1)-∫[(x²-1)+1]dx/√...
积分过程为 令x = sinθ,则dx = cosθ dθ ∫√(1-x²)dx =∫√(1-sin²θ)(cosθ dθ)=∫cos²θdθ =∫(1+cos2θ)/2dθ =θ/2+(sin2θ)/4+C =(arcsinx)/2+(sinθcosθ)/2 + C =(arcsinx)/2+(x√(1 - x²))/2+C =(1/2)[arcsinx...
根号下x2+1的不定积分是(1/2)[x√(x+1)+ln|x+√(x+1)|]+C。∫√(x²+1) dx =x√(x²+1)-∫xd[√(x²+1)]=x√(x²+1)-∫[x²/√(x²+1)]dx =x√(x²+1)-∫[(x²+1)/√(x²+1)]dx+∫[1/√(x²...
根号下x^2+1分之1的积分怎么求?新人问题,请勿嘲笑 wuyu667life 程书力电 3 阿思达放假 程书力电 3 arctanX+C wuyu667life 程书力电 3 可是计算软件说是这个,而且答案里的确有ln,还是说反三角换了表示就是那个? wuyu667life 程书力电 3 我好像懂了,谢谢二位 阿思达放假 程书力电...
见图
换元法,利用三角代换求定积分的值,过程如下图:
1/根号下(x^2+1)的不定积分解答过程如下:其中运用到了换元法,其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。
根号下 (1 + x^2) 分之一的积分可以表示为:∫(1/√(1 + x^2)) dx 这是一个常见的积分形式,也被称为反正弦积分。为了求解这个积分,可以进行变量替换。令 x = tanθ,其中 θ 是一个新的变量。则 dx = sec^2θ dθ,并且 1 + x^2 = 1 + tan^2θ = sec^2θ。将这些替换...
1/根号下(x^2+1)的不定积分 求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)分部积分,就那固定的几种类型,无非就是三角函数乘...
可以参考下图用分部积分法间接求出原函数。用三角代换法也可以,但之后仍然需要分部积分,所以直接用分部积分更好一些。