从形式上看,单位矩阵所有沿对角线的元素都是1, 而其它位置的所有元素都是0.如:\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}任意向量和单位矩阵相乘,都不会改变。我们将保持 $n$ 维向量不变的单位矩阵记作 $I_n$。形式上, $I_n\in R^{n*n}$。\forall...
我们使用字体 A 来表示张量“A'。张量A中坐标为(i,j,k) 的元素记作 . 二、一些运算 1. 转置(transpose) 转置是以对角线为轴的矩阵的镜像,从左上到右下称为主对角线(main diagonal)。 公式定义为: 向量可以看作只有一列的矩阵, 对应地,向量的转置可以看作只有一行的矩阵。 标量的转置等于自身...
标量(scalar)是0阶张量,向量(vector)是一阶张量,矩阵(matrix)是二阶张量 标量就是知道棍子的长度,但是你不会知道棍子指向哪儿 向量就是不但知道棍子的长度,还知道棍子指向前面还是后面 张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/下和左/右偏转了多少 向量的数乘? 一个数乘以...
1、标量可以看作是0阶张量。2、向量可以看作是1阶张量。3、矩阵可以看作是2阶张量。4、3阶及3阶以上的张量,通常被称之为高阶张量。可以通过ndarray分别创建不同阶的张量:张量概念的底层,同样是基于多维数组进行存储实现。为了便于使用,在Tensorflow和PyTorch等深度学习框架中,张量都是作为最基本的数据结构进行...
标量、向量、矩阵、张量。 标量(scalar)。一个标量,一个单独的数。其他大部分对象是多个数的数组。斜体表示标量。小写变量名称。明确标量数类型。实数标量,令s∊ℝ表示一条线斜率。自然数标量,令n∊ℕ表示元素数目。 向量(vector)。一个向量,一列数。有序排列。次序索引,确定每个单独的数。粗体小写变量名...
标量、向量、矩阵、张量之间的联系 在深度学习中,大家肯定都知道这几个词:标量(Scalar),向量(Vector),矩阵(Matrix),张量(Tensor)。但是要是让我们具体说下他们,可能一下子找不出头绪。下面介绍一下他们之间的关系: 标量(scalar) 一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多...
深度学习的数学基础1.线性代数:标量、向量、矩阵和张量 一、标量、向量、矩阵与张量 1. 标量(scalar) 一个标量就是一个单独的数。标量用斜体表示。 标量通常使用小写变量名称。 在介绍标量时,会明确它是哪种类型的数,如: 定义实数标量时,可能会说: “令 s ∈ R 表示一条线的斜率”; 在定义自然数标量时,...
1.标量、向量、矩阵、张量: ①标量指有大小没有方向的数。 ②向量指既有大小也有方向的一组数。 ③矩阵指二维的一组数,一行是一个对象,一列是一个对象的一个特征【一行一对象,一列一特征】。 ④张量指一个数组分布在多维网格坐标中。 2.向量的范数: ①向量的1范数(L1范
一、标量、向量、矩阵与张量 1. 标量(scalar) 一个标量就是一个单独的数。标量用斜体表示。 标量通常使用小写变量名称。 在介绍标量时,会明确它是哪种类型的数,如: 定义实数标量时,可能会说: “令 表示一条线的斜率”; 在定义自然数标量时,可能会说 “令 ...
深度学习基础:标量、向量、矩阵、张量 标量(scalar) 标量是一个独立存在的数,比如线性代数中的一个实数5就可以被看作一个标量,所以标量的运算相对简单,与平常做的算数运算类似。 向量(vector) 向量指一列顺序排列的元素,我们通常习惯用括号将这些元素扩起来,其中每个元素都又一个索引值来唯一的确定其中在向量中的...