从形式上看,单位矩阵所有沿对角线的元素都是1, 而其它位置的所有元素都是0.如:\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}任意向量和单位矩阵相乘,都不会改变。我们将保持 $n$ 维向量不变的单位矩阵记作 $I_n$。形式上, $I_n\in R^{n*n}$。\forall...
标量(scalar)是0阶张量,向量(vector)是一阶张量,矩阵(matrix)是二阶张量 标量就是知道棍子的长度,但是你不会知道棍子指向哪儿 向量就是不但知道棍子的长度,还知道棍子指向前面还是后面 张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/下和左/右偏转了多少 向量的数乘? 一个数乘以...
标量、向量、矩阵和张量 标量、向量、矩阵和张量 1.标量(scalar): ⼀个标量就是⼀个单独的数,它不同于线性代数中研究的其他⼤部分对象(通常是多个数的数组)。 我们⽤斜体表⽰标量。标量通常被赋予⼩写的变量名称。 介绍标量时,会明确它们是哪种类型的数。2.向量(vector): ⼀...
张量是线性代数中使用的一种数据结构,用于描述向量空间内代数对象集之间的多线性关系,封装了标量、向量和矩阵。一般情况下,是排列在规则网格上的数字数组,轴数可变,称为张量。我们通过写 A_( i, j, k ) 来识别张量A在坐标 ( i, j, k )处的元素。但要真正理解张量,我们需要扩展将向量视为具有大小和方向的...
标量,向量,矩阵与张量 1、标量scalar 一个标量就是一个单独的数,一般用小写的的变量名称表示。 实数标量,令s∊ℝ表示一条线斜率。自然数标量,令n∊ℕ表示元素数目。 2、向量vector 一个向量就是一列数,有序排列。次序索引,确定每个单独的数。常粗体小写变量名称。
1.标量、向量、矩阵、张量: ①标量指有大小没有方向的数。 ②向量指既有大小也有方向的一组数。 ③矩阵指二维的一组数,一行是一个对象,一列是一个对象的一个特征【一行一对象,一列一特征】。 ④张量指一个数组分布在多维网格坐标中。 2.向量的范数: ①向量的1范数(L1范
2.2.1 标量(0D 张量) 仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。 2.2.2 向量(1D 张量) 数字组成的数组叫作向量(vector)或一维张量(1D 张量)。一维张量只有一个轴 2.2.3 矩阵(2D 张量) 向量组成的数组叫作矩阵(matrix)或二维张量(2D 张量)。矩阵有 2 个轴(通常叫作行...
标量、向量、矩阵、张量。 标量(scalar)。一个标量,一个单独的数。其他大部分对象是多个数的数组。斜体表示标量。小写变量名称。明确标量数类型。实数标量,令s∊ℝ表示一条线斜率。自然数标量,令n∊ℕ表示元素数目。 向量(vector)。一个向量,一列数。有序排列。次序索引,确定每个单独的数。粗体小写变量名...
如矩阵(1-1-1)所示,矩阵的每一行就是一个向量。 矩阵的形状:每一列标量的个数 x 每一行标量的个数,矩阵(1-1-1)形状为2x2,维度为2。 04张量 将多个矩阵组合到一起可以形成张量。比如: 因此标量、向量、矩阵都可以看作是维度更少的张量。 张量的形状 ...
标量、向量、矩阵、张量之间的联系 标量(scalar) 一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。 向量(vector) 一个向量表示一组有序排列的数。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体...