数学期望E(x)求解方法:离散型随机变量为E(x) = x1p1 + x2p2 + ... + xnpn;连续型随机变量为E(x) = ∫
期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn 方差的公式:D=(X1-E)的平方*P1+(X2-E)的平方*P2+(X3-E)的平方*P4+. +(Xn-E)的平方*Pn 对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,他的分布列求数学期望和方差)有EX=np DX=np(1-p) ,n为试验次数 p为成功的概率 对于几何分布...
数学期望E(X)是随机变量的一个属性,通过特定公式计算。数学期望E(X)是随机变量的一个属性,通过特定公式计算。
数学期望的计算公式是:E(X) = ΣxP(x)。其中,E(X)表示数学期望,x表示随机变量的取值,P(x)表示随机变量取值x的概率。该公式适用于离散型随机变量的数学期望计算。对于连续型随机变量,数学期望的计算公式为:E(X) = ∫xf(x)dx。其中,f(x)是随机变量的概率密度函数。此外,数学期望还有一些...
方差的计算公式为:离散型:\(D(X) = \sum [x_i - E(X)]^2 p_i\),其中\(x_i\)是X的可能取值,\(p_i\)是\(x_i\)对应的概率,\(E(X)\)是X的数学期望。连续型:\(D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx\),其中\(f(x)\)是X的概率密度...
E(X)=X1*p(X1)+X2*p(X2)+……+Xn*p(Xn)=X1*f1(X1)+X2*f2(X2)+……+Xn*fn(Xn)。n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,…...
数学期望是对随机变量的平均值的度量,表示随机变量在大量实验中的平均表现。对于离散型随机变量X,其数学期望E(X)的计算公式为:E(X) = Σ [ x * P(X=x) ],其中x代表X可能取到的值,P(X=x)表示随机变量X等于x的概率。对于连续型随机变量X,其数学期望E(X)的计算公式为:E(X) = ∫ ...
1. 期望值E(X)的计算公式:E(X) = Σ(x * P(X = x))其中,x表示随机变量X的取值,P(X = x)表示X取值为x的概率。2. 方差D(X)的计算公式:D(X) = Σ((x - E(X))² * P(X = x))其中,x表示随机变量X的取值,E(X)表示X的期望值,P(X = x)表示X取值为x的概率...
其中,\(x_i\) 是 X 可能的取值,而 \(P(X = x_i)\) 是 X 取值为 \(x_i\) 的概率。连续型随机变量: 如果随机变量 X 的可能取值是连续的,那么它是连续型随机变量。对于连续型随机变量 X,其数学期望 E(X) 可以通过以下公式计算:\[E(X) = \int_{-\infty}^{\infty} x \...