数学期望E(x)和D(X)怎么求 答案 数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX.即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差).相关...
解析 期望就是一种均数,可以类似理解为加权平均数,X相应的概率就是它的权,所以Ex就为各个Xi×Pi的和。Dx就是一种方差,即是X偏差的加权平均,各个(Xi-Ex)的平方再乘以相应的Pi之总和。Dx与Ex之间还有一个技巧公式需要记住,就是Dx=E(X的平方)-(Ex)的平方。
首先计算数学期望E(X):\(E(X) = 1 \times 0.2 + 2 \times 0.5 + 3 \times 0.3 = 0.2 + 1 + 0.9 = 2.1\)。然后计算方差D(X):\(D(X) = (1 - 2.1)^2 \times 0.2 + (2 - 2.1)^2 \times 0.5 + (3 - 2.1)^2 \times 0.3 = 0.243\)。这个例子...
D(X)指方差,E(X)指期望。E(X)说简单点就是平均值,具体做法是求和然后除以数量。D(X)=E[X-E(X)]^2=E{X^2-2XE(X)+[E(X)]^2}=E(X^2)-2[E(X)]^2+[E(X)]^2。 方差的性质 1.设C为常数,则D(C)=0(常数无波动); 2.D(cx)=C2D(x)(常数平方提取); 证: D(-X)=D(X),D(-...
对于连续型随机变量,数学期望定义为:e(x)等于∫?∞∞xf(x)dx。其中 f(x) 是随机变量x的概率密度函数。方差d(x)描述了随机变量X与其数学期望 e(x) 的偏离程度。方差定义为:d(x)等于e[(x减e(x))2]。对于离散型随机变量,方差可以表示为:d(x)等于∑k(xk减e(x))2...
数学期望E的求解:1. 对于离散型随机变量X,E = x1p1 + x2p2 + ... + xnpn,其中xi表示随机变量X的可能取值,pi表示对应取值的概率。2. 对于连续型随机变量X,如果其概率密度函数为f,则E可以通过积分求得,即E = ∫xfdx,积分区间根据随机变量的定义域确定。方差D的求解:1. 方差D用于...
ex和dx公式如下:D(X)=E[X-E(X)]^2=E{X^2-2XE(X)+[E(X)]^2}=E(X^2)-2[E(X)]^2+[E(X)]^2。方差的应用 1、金融领域:在金融学中,方差常被用来度量投资组合的风险。通过计算资产收益率的方差,投资者可以评估投资组合的波动性。投资者通常倾向于选择方差较小的投资组合,因为...
数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差)。
期望就是一种均数,可以类似理解为加权平均数,X相应的概率就是它的权,所以Ex就为各个Xi×Pi的和。Dx就是一种方差,即是X偏差的加权平均,各个(Xi-Ex)的平方再乘以相应的Pi之总和。Dx与Ex之间还有一个技巧公式需要记住,就是Dx=E(X的平方)-(Ex)的平方。
1. 期望值E(X)的计算公式:E(X) = Σ(x * P(X = x))其中,x表示随机变量X的取值,P(X = x)表示X取值为x的概率。2. 方差D(X)的计算公式:D(X) = Σ((x - E(X))² * P(X = x))其中,x表示随机变量X的取值,E(X)表示X的期望值,P(X = x)表示X取值为x的概率...