当x趋向于0时,ln(1+x)~x等价无穷小的证明. 答案 lim(x→0) ln(1+x)/x=lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)]由两个重要极限知:lim(x→0) (1+x)^(1/x)=e,所以原式=lne=1,所以ln(1+x)和x是等价无穷小相关...
百度试题 结果1 题目【题目】怎么证明ln(1+x)与x为等价无穷小量? 相关知识点: 试题来源: 解析 【解析】 ∵lim(x-0)[ln(1+x)]/x=lim_(x→0)(x-20)1/(1+x) 【罗比达法则】=1∴x-y0 时,ln(1+)与为等价无穷小量. 反馈 收藏
∵lim(x-->0)[ln(1+x)]/x=lim(x-->0)1/(1+x) 【罗比达法则】=1∴x-->0时,ln(1+x)与为等价x无穷小量. 结果二 题目 怎么证明ln(1+x)与x为等价无穷小量? 答案 ∵lim(x-->0)[ln(1+x)]/x=lim(x-->0)1/(1+x) 【罗比达法则】=1∴x-->0时,ln(1+x)与为等价x无穷小量. 结...
limln(1+x)/x (x趋于0) =lim1/1+x (运用洛必达法则) =1 所以ln(1+x)和x是等价无穷小 分析总结。 为什么ln1x和x是等价无穷小啊怎么证明出来的结果一 题目 为什么ln(1+x)和x是等价无穷小啊,怎么证明出来的详细说明或给出证明过程啊. 答案 limln(1+x)/x (x趋于0)=lim1/1+x (运用洛必达法...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向...
既然证明二者为等价无穷小 那么就是x趋于0的时候 二者比值的极限值趋于1 lim(x趋于0) ln(1+x) /x 使用洛必达法则得到 原极限=lim(x趋于0) 1/(1+x)代入x=0,极限值当然等于1 所以ln(1+x) 和x是等价无穷小
当我们研究当x趋向于0时,ln(1+x)与x的关系,我们发现两者具有等价无穷小的特性。为了证明这一点,我们可以利用两个重要极限进行推导。首先,我们观察表达式lim(x→0) ln(1+x)/x。通过转换,我们可以将其变形为lim(x→0) ln(1+x)^(1/x)。进一步地,这可以写为ln[lim(x→0) (1+x)^(...
ln(1 x)等价于x的证明 因为lim(x-->0)[ln(1+x)]/x=lim(x-->0)1/(1+x) 【罗比达法则】=1。所以x-->0时,ln(1+x)与为等价x无穷小量。 设有两个命题p和q,如果由p作为条件能使得结论q成立,则称p是q的充分条件;若由q能使p成立则称p是q的必要条件;如果p与q能互推(即无论是由q推出p...
1. 当x趋向于0时,我们需要证明ln(1+x)/x与x之间的关系。2. 我们可以使用极限的概念来进行证明。具体地,我们要证明lim(x→0) ln(1+x)/x的值。3. 根据对数函数的性质,我们可以将原式改写为lim(x→0) ln(1+x)^(1/x)。4. 由两个重要极限lim(x→0) (1+x)^(1/x)=e,我们...
1)因为lim_(x→0)(ln(1+x))/x=lim_(x→0)1/xln(1+x)=lim_(x→0)ln(1+x)^(1/x)=1 ,所以当 x→0 时,ln(1+x)与x是等价无穷小.(2)令 e^x-1=t ,则x=ln(1+t)且当 x→0 时 t→0 ,lim_(x→0)(e^x-1)/x=lim_(x→0)c/(ln(2-1))=lim_(x→0)=1/(ln(1+x))...