证明三角形中常用的中线长公式若△ABC中,三边分别为a,b,c,且三条中线为AD,BE,CF,求证:AD2=b2+c22−a24,BE2=a2+c22−b24,CF2=a
这时,DF=CF,∴ΔADH就是三条中线平移后构成的三角形。∵SΔABH=SΔABD=1/2SΔABC,而SΔHBD=SΔFDC=1/4SΔABC,∴SΔADH=SΔABC-1/4SΔABC=3/4SΔABC=3/4
分别过E、B做CF、AD的平行线交予H,EH交AB与G 三角形AEG的面积为三角形ABC面积的1/8 以AD,BE,CF为三边的三角形的面积=(1/2-1/8)*2=3/4
13.AD,BE分别是三角形ABC的中线,若AD=BE=2,且−−→ADAD→、−−→EBEB→的夹角为2π32π3,则−−→ABAB→•−−→ACAC→=( ) A.8989B.4949C.8383D.4343 试题答案 在线课程 分析根据向量的加减的几何意义和数量积定义即可.
(1)3cm(2)6cm2 (1)因为AD是三角形ABC的中线,所以BD=CD因为三角形ABD的周长为AB+AD+BD,三角形ACD的周长为AC+CD+AD,所以三角形ABD与三角形ACD的周长的差为AB+AD+BD-(AC+CD+AD)=AB-AC=6-3=3cm(2)三角形ABD的面积=012BD012AE=012012012BC012AE=01201212=6012 结果...
若三角形ABC的三个顶点的坐标分别为A(4,0),B(6,7),C(0,3) (1)求BC边上的高所在直线的方程; (2)求BC边上的中线所在的直线方程.&n
三角形ABC的中线BD,CE相交于点O,F,G分别是BO,CO中点。若三角形abc的面积为12,求四边形efgd的面积 1个回答 #热议# 该不该让孩子很早学习人情世故?鹿总攻罒v罒 2014-06-08 · TA获得超过747个赞 知道答主 回答量:44 采纳率:0% 帮助的人:27.5万 我也去答题访问个人页 关注 展开全部 本...
解:∵AD是中线,∴BD=CD △ABD与△ADC的面积相等 ∴S△ABC=△ABD+△ADC=4 AB*CH/2=4 ∴CH=4*2/3=8/3 三角形角的性质:1、在平面上三角形的内角和等于180°(内角和定理)。2、在平面上三角形的外角和等于360° (外角和定理)。3、在平面上三角形的外角等于与其不相邻的两个内角之和...
【题目】已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180° (1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数; (2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论; (3)如图2,设EF交AB于点G,交AC于点...
如图,在△ ABC中,AB=AC,BC=2,三角形的中线BE、CD交于点O,点F、G分别为OB、OC的中点.若四边形DFGE是正方形,则△ ABC的面积为___