如图,在Rt△ABC中,∠ACB=90°,按以下步骤作图:①以C为圆心,以适当长为半径画弧交AC于E,交BC于F.②分别以E,F为圆心,以大于 1 2 EF的长为半径作弧,两弧相交于P;
如图,在Rt△ABC中,∠ACB=90°,分别以AC、AB为斜边向△ABC外作等腰直角△ACD和等腰直角△BCE,取AB的中点M,连接MD,ME分别交AC、BC于点P、Q,直线PQ分别交AD、BE于点F、G.有以下结论:①△MD
【答案】 分析:(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可; (2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可. 解答: 解:(1)∵∠C=90°,∠A=30°, , ∴BC= AB=2 ,AC=6, ∵∠C=90°,DE⊥AC, ∴DE∥BC, ∵D为AC中点, ∴E为AB中点, ...
首先由Rt△ABC中,∠ACB=90°,AC=15,BC=20,利用勾股定理即可求得AB的长,然后由题意易得△ECF是等腰直角三角形,然后由三角形的面积公式,求得CE的长,继而求得DF的长,再利用勾股定理求得答案. 本题考点:翻折变换(折叠问题) 考点点评: 此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,...
如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,BE的长为___.
如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过点D作DE⊥AB交AC于E,若AC=8, ,求DE的长. 【答案】 分析: 首先在Rt△ABC中,根据题意求出BC、AB的长度,结合图形即可推出AD、BD的长度,最后在Rt△ADE中,再求DE的长度即可. 解答: 解
如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°;四边形DEFG为矩形,DE= cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.将Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止移动,设Rt△ABC与矩形DEFG重叠部分的面积为y,Rt
如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°;四边形DEFG为矩形,DE= cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.将Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止移动,设Rt△ABC与矩形DEFG重叠部分的面积为y,Rt△ABC平移的时间为x (s). (1)求...
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C. (1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形; (2)如图2,当θ=45°时,设A′C与AB交于点P,求 的值. 查看本题试卷 2020年东营市中考数学压轴题型...
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C. (1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形; (2)如图2,当θ=45°时,设A′C与AB交于点P,求 的值. 查看本题试卷 2020年东营市中考数学压轴题型...