但超越方程的解不都是超越数,如:的解为xex=0的解为x=W(0)=0
我们把方程 xe^x=1 的实数解称为欧米伽常数,记为 .和e一样,都是无理数,还被称为指数函数中的“黄金比例”.下列有关2的结论正确的是() A. Ω∈(0.5,1)
我们把方程 xe^x=1 的实数解称为欧米加常数记为0.n和e一样,都是无理数,0还被称为指数函数中的“黄金比例”.下列有关2的结论正确的是() A. Ω∈(0.5,1)
分析:(1)先求出切点的坐标,然后求出x=1处的导数,从而求出切线的斜率,利用点斜式方程即可求出切线方程.(2)由题意可得,即求f(x)的最小值,利用导数先判断函数的单调性,求出最小值即得结论.解答: 解:(1)∵f(x)=xex∴f′(x)=ex+xex,∴f′(1)=2e,又f(1)=e,∴曲线y=f(x)在点(1,f(1))...
此题算是一个超越方程,我们无法直接求解,即便求出的解也只能是近似值。通常用二分法求解,变成判断这个等式的零点,即将Xe^x-1=0.首先我们可以估计到这个X在(0,1)之间,取中间值1/2带入上式 可以知道 1/2e^(1/2)-1<0 所以X的值在(1/2,1)直接。再取中间值3/4 带入其中3/4e^...
总述:本次共解1题。其中 ☆方程1题〖 1/1方程〗 作业:求方程 xe^x = 1 的解. 题型:方程 解: 方程的解为: x≈0.567143 ,保留6位小数 有1个解。解方程的详细方法请参阅:《方程的解法》 你的问题在这里没有得到解决?请到 热门难题 里面看看吧!
解法一:xe^x=1\Longleftrightarrow e^x=\frac{1}{x}\Longleftrightarrow x=ln\frac{1}{x};① xlnx=1\Longleftrightarrow lnx=\frac{1}{x}\Longleftrightarrow t=ln\frac{1}{t}(其中t=\frac{1}{x}). ② 由图象易判断y=x与y=ln\frac{1}{x} =-lnx仅有一个交点, 故①与②同解, ...
我们把方程xe^x=1的实数解称为欧米加常数,记为Ω,Ω和e一样,都是无理数,Ω还被称为在指数函数中的"黄金比例".下列有关Ω的结论正确的是( ). A. Ω∈(0.5,1) B. ln1/Ω=Ω C. Ω=u^u,其中u=1/e D. 函数f(x)=(e^x+xln x)/(x+1)的最小值为f(Ω) ...
首先排除负数和0,然后左边是单调增,二分法求近似解。
迭代公式:x'=x-(x-1/e^x)/(x+1)取初值:x0=0 x1=x0-(x0-1/e^x0)/(x0+1)=1 x2=x1-(x1-1/e^x1)/(x1+1)=0.683939721 x3=x2-(x2-1/e^x2)/(x2+1)=0.577454477 x4=x3-(x3-1/e^x3)/(x3+1)=0.567229738 ...